Suppr超能文献

石珊瑚摄入微塑料:潜在的钙化作用、尺寸限制和滞留。

Scleractinian coral microplastic ingestion: Potential calcification effects, size limits, and retention.

机构信息

United States Environmental Protection Agency, National Health & Environmental Effects, Research Laboratory, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA.

United States Environmental Protection Agency, National Health & Environmental Effects, Research Laboratory, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA.

出版信息

Mar Pollut Bull. 2018 Oct;135:587-593. doi: 10.1016/j.marpolbul.2018.07.067. Epub 2018 Jul 27.

Abstract

The impact that microplastics (<5 mm) have on scleractinian coral is largely unknown. This study investigated calcification effects, size limits, and retention times of microbeads and microfibers in two Caribbean species, Montastraea cavernosa and Orbicella faveolata, in a series of three experiments. No calcification effects were seen in the two-day exposure to a microbead concentration of 30 mg L. M. cavernosa and O. faveolata actively ingested microbeads ranging in size from 425 μm-2.8 mm, however, a 212-250 μm size class did not elicit a feeding response. The majority of microbeads were expelled within 48 h of ingestion. There was no difference in ingestion or retention times of 425-500 μm microbeads versus 3-5 mm long microfibers. M. cavernosa and O. faveolata have the ability to recognize and reject indigestible material, yet, there is still a need to study effects of energetics and microplastic contamination as a result of ingestion and egestion.

摘要

微塑料(<5 毫米)对石珊瑚的影响在很大程度上是未知的。本研究通过一系列的三项实验,调查了两种加勒比石珊瑚,M. cavernosa 和 O. faveolata 对钙化作用、尺寸限制和微珠及微纤维滞留时间的影响。在为期两天的暴露实验中,浓度为 30mg/L 的微珠对石珊瑚无钙化作用。M. cavernosa 和 O. faveolata 可主动摄食粒径在 425μm-2.8mm 的微珠,但 212-250μm 的粒径则不引起摄食反应。大多数微珠在摄入后 48 小时内被排出。425-500μm 的微珠和 3-5mm 长的微纤维的摄食和滞留时间没有差异。M. cavernosa 和 O. faveolata 具有识别和排斥不可消化物质的能力,但仍需要研究因摄入和排出而导致的能量学和微塑料污染的影响。

相似文献

1
Scleractinian coral microplastic ingestion: Potential calcification effects, size limits, and retention.
Mar Pollut Bull. 2018 Oct;135:587-593. doi: 10.1016/j.marpolbul.2018.07.067. Epub 2018 Jul 27.
2
Microplastic ingestion by coral as a function of the interaction between calyx and microplastic size.
Sci Total Environ. 2022 Mar 1;810:152333. doi: 10.1016/j.scitotenv.2021.152333. Epub 2021 Dec 12.
3
Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis.
Environ Pollut. 2021 Apr 15;275:116649. doi: 10.1016/j.envpol.2021.116649. Epub 2021 Feb 3.
4
Responses of reef building corals to microplastic exposure.
Environ Pollut. 2018 Jun;237:955-960. doi: 10.1016/j.envpol.2017.11.006. Epub 2017 Nov 13.
5
Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata.
Proc Biol Sci. 2019 Jun 26;286(1905):20190726. doi: 10.1098/rspb.2019.0726.
6
Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ.
J Hazard Mater. 2021 Feb 15;404(Pt B):124205. doi: 10.1016/j.jhazmat.2020.124205. Epub 2020 Oct 8.
7
Chemoreception drives plastic consumption in a hard coral.
Mar Pollut Bull. 2017 Nov 15;124(1):198-205. doi: 10.1016/j.marpolbul.2017.07.030. Epub 2017 Jul 22.
9
Uncertainty and variability of extension rate, density and calcification rate of a hermatypic coral (Orbicella faveolata).
Sci Total Environ. 2019 Feb 10;650(Pt 1):1576-1581. doi: 10.1016/j.scitotenv.2018.08.397. Epub 2018 Sep 1.
10
Microbiomes of three coral species in the Mexican Caribbean and their shifts associated with the Stony Coral Tissue Loss Disease.
PLoS One. 2024 Aug 26;19(8):e0304925. doi: 10.1371/journal.pone.0304925. eCollection 2024.

引用本文的文献

1
Coral reef attributes associated with microplastic exposure.
Coral Reefs. 2025 Feb 1;44(1):193-207. doi: 10.1007/s00338-024-02596-4.
2
Predicting microplastic dynamics in coral reefs: presence, distribution, and bioavailability through field data and numerical simulation analysis.
Environ Sci Pollut Res Int. 2025 Mar;32(15):9655-9675. doi: 10.1007/s11356-025-36234-5. Epub 2025 Mar 26.
3
Microplastic Leachate Negatively Affects Fertilization in the Coral Montipora capitata.
Integr Comp Biol. 2024 Oct 28;64(4):1131-1140. doi: 10.1093/icb/icae143.
4
Microplastic pollution: a review of techniques to identify microplastics and their threats to the aquatic ecosystem.
Environ Monit Assess. 2024 Feb 20;196(3):285. doi: 10.1007/s10661-024-12441-4.
5
Editorial: The physiological response of aquatic invertebrates to pollution.
Front Physiol. 2023 Sep 26;14:1295636. doi: 10.3389/fphys.2023.1295636. eCollection 2023.
6
Microplastics do not affect bleaching of at ambient or elevated temperatures.
PeerJ. 2022 Jun 17;10:e13578. doi: 10.7717/peerj.13578. eCollection 2022.
7
Microplastics: impacts on corals and other reef organisms.
Emerg Top Life Sci. 2022 Mar 14;6(1):81-93. doi: 10.1042/ETLS20210236.
9
Microplastic ingestion by coral as a function of the interaction between calyx and microplastic size.
Sci Total Environ. 2022 Mar 1;810:152333. doi: 10.1016/j.scitotenv.2021.152333. Epub 2021 Dec 12.

本文引用的文献

2
Plastic waste associated with disease on coral reefs.
Science. 2018 Jan 26;359(6374):460-462. doi: 10.1126/science.aar3320.
3
Responses of reef building corals to microplastic exposure.
Environ Pollut. 2018 Jun;237:955-960. doi: 10.1016/j.envpol.2017.11.006. Epub 2017 Nov 13.
4
Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples.
Environ Sci Technol. 2017 Dec 5;51(23):13641-13648. doi: 10.1021/acs.est.7b04512. Epub 2017 Nov 20.
5
Production, use, and fate of all plastics ever made.
Sci Adv. 2017 Jul 19;3(7):e1700782. doi: 10.1126/sciadv.1700782. eCollection 2017 Jul.
6
Chemoreception drives plastic consumption in a hard coral.
Mar Pollut Bull. 2017 Nov 15;124(1):198-205. doi: 10.1016/j.marpolbul.2017.07.030. Epub 2017 Jul 22.
8
Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR.
Chemosphere. 2017 May;175:391-400. doi: 10.1016/j.chemosphere.2017.02.024. Epub 2017 Feb 7.
9
Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles.
Mar Environ Res. 2016 Sep;120:1-8. doi: 10.1016/j.marenvres.2016.07.004. Epub 2016 Jul 5.
10
Oyster reproduction is affected by exposure to polystyrene microplastics.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2430-5. doi: 10.1073/pnas.1519019113. Epub 2016 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验