Suppr超能文献

半主动式变刚度假肢的设计与验证。

Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2351-2359. doi: 10.1109/TNSRE.2018.2877962. Epub 2018 Oct 25.

Abstract

This paper presents the design and validation of a novel lower limb prosthesis called the variable stiffness foot (VSF), designed to vary its forefoot stiffness in response to user activity. The VSF is designed as a semi-active device that adjusts its stiffness once per stride during swing phases, in order to minimize size, mass, and power consumption. The forefoot keel is designed as an overhung composite beam, whose stiffness is varied by moving a support fulcrum to change the length of the overhang. Stiffness modulation is programmed in response to the gait characteristics detected through foot trajectory reconstruction based on an embedded inertial sensor. The prototype VSF has a mass of only 649 g including the battery, and a build height of 87 mm. Mechanical testing demonstrated a forefoot stiffness range of 10-32 N/mm for the prototype, a threefold range of stiffness variation. The stiffness range can be altered by changing the keel material or geometry. Actuation testing showed that the VSF can make a full-scale stiffness adjustment within three strides, and tracks moderate speed-driven variations within one swing phase. Human subjects testing demonstrated greater energy storage and return with lower stiffness settings. This capability may be useful for the modulating prosthesis energy return to better mimic human ankle function. Subjective feedback indicated clear perception by the subjects of contrasts among the stiffness settings, including interpretation of scenarios for which different settings may be beneficial. Future applications of the VSF include adapting stiffness to optimize stairs, ramps, turns, and standing.

摘要

本文提出了一种新型下肢假肢的设计和验证,称为可变刚度脚(VSF),旨在根据用户活动改变前脚的刚度。VSF 设计为半主动装置,在摆动阶段每步调整一次刚度,以最小化尺寸、质量和功耗。前脚龙骨设计为一个悬伸复合材料梁,其刚度通过移动支撑支点来改变悬伸长度来改变。刚度调节是根据基于嵌入式惯性传感器的足部轨迹重建检测到的步态特征来编程的。原型 VSF 包括电池在内的质量仅为 649 克,高度为 87 毫米。机械测试表明,原型的前脚刚度范围为 10-32 N/mm,刚度变化范围为三倍。通过改变龙骨材料或几何形状可以改变刚度范围。致动测试表明,VSF 可以在三个步伐内完成全规模的刚度调整,并在一个摆动阶段内跟踪中速驱动的变化。人体测试表明,较低的刚度设置可以存储更多的能量并返回更多的能量。这种能力可能有助于调节假肢的能量返回,以更好地模拟人类脚踝的功能。主观反馈表明,受试者清楚地感知到了不同刚度设置之间的差异,包括对不同设置可能有益的场景的解释。VSF 的未来应用包括适应刚度以优化楼梯、斜坡、转弯和站立。

相似文献

1
Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2351-2359. doi: 10.1109/TNSRE.2018.2877962. Epub 2018 Oct 25.
3
5
Biomechanical response to ankle-foot orthosis stiffness during running.
Clin Biomech (Bristol). 2015 Dec;30(10):1125-32. doi: 10.1016/j.clinbiomech.2015.08.014. Epub 2015 Sep 1.
6
Speed Adaptable Prosthetic Foot: Concept Description, Prototyping and Initial User Testing.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2978-2986. doi: 10.1109/TNSRE.2020.3036329. Epub 2021 Jan 28.
8
The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
Clin Biomech (Bristol). 2014 Sep;29(8):877-84. doi: 10.1016/j.clinbiomech.2014.07.005. Epub 2014 Aug 8.
9
Effect of Shoes on Stiffness and Energy Efficiency of Ankle-Foot Orthosis: Bench Testing Analysis.
J Appl Biomech. 2017 Dec 1;33(6):460-463. doi: 10.1123/jab.2016-0309. Epub 2017 Oct 30.
10
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2375-2386. doi: 10.1109/TNSRE.2017.2750113. Epub 2017 Sep 7.

引用本文的文献

1
Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator.
IEEE Trans Med Robot Bionics. 2023 Jun 30;5(3):741-752. doi: 10.1109/TMRB.2023.3291015.
2
Design Optimization of the Mechanics of a Metamaterial-Based Prosthetic Foot.
Materials (Basel). 2024 Dec 29;18(1):96. doi: 10.3390/ma18010096.
4
A low-power ankle-foot prosthesis for push-off enhancement.
Wearable Technol. 2023 Jun 15;4:e18. doi: 10.1017/wtc.2023.13. eCollection 2023.
6
7
A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint.
Sci Robot. 2022 Nov 23;7(72):eabo3996. doi: 10.1126/scirobotics.abo3996.
8
A simulation-based analysis of the effects of variable prosthesis stiffness on interface dynamics between the prosthetic socket and residual limb.
J Rehabil Assist Technol Eng. 2022 Jul 15;9:20556683221111986. doi: 10.1177/20556683221111986. eCollection 2022 Jan-Dec.
9
Design of an Underactuated Powered Ankle and Toe Prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4920-4923. doi: 10.1109/EMBC46164.2021.9629842.

本文引用的文献

1
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2375-2386. doi: 10.1109/TNSRE.2017.2750113. Epub 2017 Sep 7.
2
An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition.
Sensors (Basel). 2017 Sep 4;17(9):2020. doi: 10.3390/s17092020.
3
Sensitivity of biomechanical outcomes to independent variations of hindfoot and forefoot stiffness in foot prostheses.
Hum Mov Sci. 2017 Aug;54:154-171. doi: 10.1016/j.humov.2017.04.005. Epub 2017 May 9.
5
Changes to transtibial amputee gait with a weighted backpack on multiple surfaces.
Clin Biomech (Bristol). 2015 Dec;30(10):1119-24. doi: 10.1016/j.clinbiomech.2015.08.015. Epub 2015 Sep 2.
6
Center of pressure and total force analyses for amputees walking with a backpack load over four surfaces.
Appl Ergon. 2016 Jan;52:169-76. doi: 10.1016/j.apergo.2015.07.014. Epub 2015 Jul 31.
7
Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking.
Med Eng Phys. 2015 Oct;37(10):929-36. doi: 10.1016/j.medengphy.2015.06.010. Epub 2015 Aug 4.
8
Variable Cadence Walking and Ground Adaptive Standing With a Powered Ankle Prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):495-505. doi: 10.1109/TNSRE.2015.2428196. Epub 2015 Apr 30.
9
Comparison of four different categories of prosthetic feet during ramp ambulation in unilateral transtibial amputees.
Prosthet Orthot Int. 2015 Oct;39(5):380-9. doi: 10.1177/0309364614536762. Epub 2014 Jun 12.
10
A universal ankle-foot prosthesis emulator for human locomotion experiments.
J Biomech Eng. 2014 Mar;136(3):035002. doi: 10.1115/1.4026225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验