Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Bioinspired Computing Laboratory, Computer Science Department, University of São Paulo, Brazil.
Neurobiol Aging. 2019 Feb;74:112-120. doi: 10.1016/j.neurobiolaging.2018.10.016. Epub 2018 Oct 19.
The human electroencephalogram (EEG) of sleep undergoes profound changes with age. These changes can be conceptualized as "brain age (BA)," which can be compared to chronological age to reflect the degree of deviation from normal aging. Here, we develop an interpretable machine learning model to predict BA based on 2 large sleep EEG data sets: the Massachusetts General Hospital (MGH) sleep lab data set (N = 2532; ages 18-80); and the Sleep Heart Health Study (SHHS, N = 1974; ages 40-80). The model obtains a mean absolute deviation of 7.6 years between BA and chronological age (CA) in healthy participants in the MGH data set. As validation, a subset of SHHS containing longitudinal EEGs 5.2 years apart shows an average of 5.4 years increase in BA. Participants with significant neurological or psychiatric disease exhibit a mean excess BA, or "brain age index" (BAI = BA-CA) of 4 years relative to healthy controls. Participants with hypertension and diabetes have a mean excess BA of 3.5 years. The findings raise the prospect of using the sleep EEG as a potential biomarker for healthy brain aging.
人类的睡眠脑电图(EEG)随年龄的增长发生了深刻的变化。这些变化可以被概念化为“大脑年龄(BA)”,可以与实际年龄进行比较,以反映与正常衰老的偏离程度。在这里,我们开发了一种可解释的机器学习模型,该模型基于两个大型睡眠 EEG 数据集来预测 BA:马萨诸塞州综合医院(MGH)睡眠实验室数据集(N=2532;年龄 18-80 岁);以及睡眠心脏健康研究(SHHS,N=1974;年龄 40-80 岁)。该模型在 MGH 数据集中健康参与者的 BA 与实际年龄(CA)之间获得了 7.6 年的平均绝对偏差。作为验证,SHHS 的一个包含相隔 5.2 年的纵向 EEG 的子集显示 BA 平均增加了 5.4 年。与健康对照组相比,患有严重神经或精神疾病的参与者的 BA 平均偏高,即“大脑年龄指数(BAI=BA-CA)”为 4 年。患有高血压和糖尿病的参与者的 BA 平均偏高 3.5 年。这些发现提出了使用睡眠 EEG 作为健康大脑老化潜在生物标志物的前景。