Suppr超能文献

脑电睡眠中的脑龄。

Brain age from the electroencephalogram of sleep.

机构信息

Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Bioinspired Computing Laboratory, Computer Science Department, University of São Paulo, Brazil.

出版信息

Neurobiol Aging. 2019 Feb;74:112-120. doi: 10.1016/j.neurobiolaging.2018.10.016. Epub 2018 Oct 19.

Abstract

The human electroencephalogram (EEG) of sleep undergoes profound changes with age. These changes can be conceptualized as "brain age (BA)," which can be compared to chronological age to reflect the degree of deviation from normal aging. Here, we develop an interpretable machine learning model to predict BA based on 2 large sleep EEG data sets: the Massachusetts General Hospital (MGH) sleep lab data set (N = 2532; ages 18-80); and the Sleep Heart Health Study (SHHS, N = 1974; ages 40-80). The model obtains a mean absolute deviation of 7.6 years between BA and chronological age (CA) in healthy participants in the MGH data set. As validation, a subset of SHHS containing longitudinal EEGs 5.2 years apart shows an average of 5.4 years increase in BA. Participants with significant neurological or psychiatric disease exhibit a mean excess BA, or "brain age index" (BAI = BA-CA) of 4 years relative to healthy controls. Participants with hypertension and diabetes have a mean excess BA of 3.5 years. The findings raise the prospect of using the sleep EEG as a potential biomarker for healthy brain aging.

摘要

人类的睡眠脑电图(EEG)随年龄的增长发生了深刻的变化。这些变化可以被概念化为“大脑年龄(BA)”,可以与实际年龄进行比较,以反映与正常衰老的偏离程度。在这里,我们开发了一种可解释的机器学习模型,该模型基于两个大型睡眠 EEG 数据集来预测 BA:马萨诸塞州综合医院(MGH)睡眠实验室数据集(N=2532;年龄 18-80 岁);以及睡眠心脏健康研究(SHHS,N=1974;年龄 40-80 岁)。该模型在 MGH 数据集中健康参与者的 BA 与实际年龄(CA)之间获得了 7.6 年的平均绝对偏差。作为验证,SHHS 的一个包含相隔 5.2 年的纵向 EEG 的子集显示 BA 平均增加了 5.4 年。与健康对照组相比,患有严重神经或精神疾病的参与者的 BA 平均偏高,即“大脑年龄指数(BAI=BA-CA)”为 4 年。患有高血压和糖尿病的参与者的 BA 平均偏高 3.5 年。这些发现提出了使用睡眠 EEG 作为健康大脑老化潜在生物标志物的前景。

相似文献

1
Brain age from the electroencephalogram of sleep.
Neurobiol Aging. 2019 Feb;74:112-120. doi: 10.1016/j.neurobiolaging.2018.10.016. Epub 2018 Oct 19.
2
Excess brain age in the sleep electroencephalogram predicts reduced life expectancy.
Neurobiol Aging. 2020 Apr;88:150-155. doi: 10.1016/j.neurobiolaging.2019.12.015. Epub 2019 Dec 23.
3
Sleep EEG functional connectivity varies with age and sex, but not general intelligence.
Neurobiol Aging. 2019 Jun;78:87-97. doi: 10.1016/j.neurobiolaging.2019.02.007. Epub 2019 Feb 21.
4
Night-to-night variability of sleep electroencephalography-based brain age measurements.
Clin Neurophysiol. 2021 Jan;132(1):1-12. doi: 10.1016/j.clinph.2020.09.029. Epub 2020 Oct 29.
5
HIV increases sleep-based brain age despite antiretroviral therapy.
Sleep. 2021 Aug 13;44(8). doi: 10.1093/sleep/zsab058.
6
Novel neuroelectrophysiological age index associated with imaging features of brain aging and sleep disorders.
Neuroimage. 2022 Dec 1;264:119753. doi: 10.1016/j.neuroimage.2022.119753. Epub 2022 Nov 15.
7
Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning: A Data-Repurposing Approach.
Anesth Analg. 2020 May;130(5):1211-1221. doi: 10.1213/ANE.0000000000004651.
8
Kidney Age Index (KAI): A novel age-related biomarker to estimate kidney function in patients with diabetic kidney disease using machine learning.
Comput Methods Programs Biomed. 2021 Nov;211:106434. doi: 10.1016/j.cmpb.2021.106434. Epub 2021 Sep 20.
9
Age-dependent changes in sleep EEG topography.
Clin Neurophysiol. 2001 Feb;112(2):369-77. doi: 10.1016/s1388-2457(00)00542-3.
10
Is Sleep Duration Associated with Biological Age (BA)?: Analysis of (2010⁻2015) South Korean NHANES Dataset South Korea.
Int J Environ Res Public Health. 2018 Sep 14;15(9):2009. doi: 10.3390/ijerph15092009.

引用本文的文献

1
[Research progress in electroencephalogram-based brain age prediction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):832-840. doi: 10.7507/1001-5515.202503043.
3
Do try this at home: Age prediction from sleep and meditation with large-scale low-cost mobile EEG.
Imaging Neurosci (Camb). 2024 Jun 21;2. doi: 10.1162/imag_a_00189. eCollection 2024.
4
Brain age revisited: Investigating the state vs. trait hypotheses of EEG-derived brain-age dynamics with deep learning.
Imaging Neurosci (Camb). 2024 Jul 8;2. doi: 10.1162/imag_a_00210. eCollection 2024.
5
Harmonizing and aligning M/EEG datasets with covariance-based techniques to enhance predictive regression modeling.
Imaging Neurosci (Camb). 2023 Dec 18;1. doi: 10.1162/imag_a_00040. eCollection 2023.
6
Lifespan brain age prediction based on multiple EEG oscillatory features and sparse group lasso.
Front Aging Neurosci. 2025 Jul 22;17:1559067. doi: 10.3389/fnagi.2025.1559067. eCollection 2025.
7
Brain age prediction model based on electroencephalogram signal and its application in children with autism spectrum disorders.
Front Neurol. 2025 Jun 18;16:1605291. doi: 10.3389/fneur.2025.1605291. eCollection 2025.
9
Sleep-Based Brain Age Is Reduced in Advanced Inner Engineering Meditators.
Mindfulness (N Y). 2025;16(6):1675-1692. doi: 10.1007/s12671-025-02583-y. Epub 2025 May 16.
10
Editorial: Biological and digital markers in sleep, circadian rhythm and epilepsy using artificial intelligence.
Front Physiol. 2025 May 12;16:1616497. doi: 10.3389/fphys.2025.1616497. eCollection 2025.

本文引用的文献

1
The sleep EEG spectrum is a sexually dimorphic marker of general intelligence.
Sci Rep. 2017 Dec 22;7(1):18070. doi: 10.1038/s41598-017-18124-0.
2
Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.
Neuron. 2018 Jan 3;97(1):221-230.e4. doi: 10.1016/j.neuron.2017.11.020. Epub 2017 Dec 14.
3
Do Older Adults Need Sleep? A Review of Neuroimaging, Sleep, and Aging Studies.
Curr Sleep Med Rep. 2017 Sep;3(3):204-214. doi: 10.1007/s40675-017-0086-z. Epub 2017 Jul 27.
4
Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.
Trends Neurosci. 2017 Dec;40(12):681-690. doi: 10.1016/j.tins.2017.10.001. Epub 2017 Oct 23.
5
Large-Scale Automated Sleep Staging.
Sleep. 2017 Oct 1;40(10). doi: 10.1093/sleep/zsx139.
6
Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association.
Stroke. 2017 Oct;48(10):e284-e303. doi: 10.1161/STR.0000000000000148. Epub 2017 Sep 7.
7
Neuroimaging-derived brain-age: an ageing biomarker?
Aging (Albany NY). 2017 Aug 30;9(8):1861-1862. doi: 10.18632/aging.101286.
8
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.
Neuroimage. 2017 Dec;163:115-124. doi: 10.1016/j.neuroimage.2017.07.059. Epub 2017 Jul 29.
9
Metabolite Clearance During Wakefulness and Sleep.
Handb Exp Pharmacol. 2019;253:385-423. doi: 10.1007/164_2017_37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验