Suppr超能文献

基于脑电图信号的脑年龄预测模型及其在自闭症谱系障碍儿童中的应用

Brain age prediction model based on electroencephalogram signal and its application in children with autism spectrum disorders.

作者信息

Ju Yi, Zhao Tong, Gao Zaifen, Hu Wenguang, Luo Jiejian, Cheng Nian, Liu Chunli, Jiang Yuwu, Hong Bo, Ji Taoyun, Yan Yuxiang

机构信息

First Hospital, Peking University, Beijing, China.

Gnosis Healthineer Co., Ltd., Beijing, China.

出版信息

Front Neurol. 2025 Jun 18;16:1605291. doi: 10.3389/fneur.2025.1605291. eCollection 2025.

Abstract

BACKGROUND

There is a lack of objective biomarkers for brain developmental abnormalities of autism spectrum disorder (ASD). We used EEG and deep learning to conduct a brain aging study in ASD.

METHODS

(1) A total of 659 healthy children and 98 ASD patients were retrospectively recruited. (2) An Auto-EEG-Brain AGE prediction model based on the Gate Recurrent Unit (GRU) neural network method was constructed. (3) Using the constructed model, we evaluated the difference between the brain age of ASD and that of healthy controls, and assessed the feasibility in the clinical assessment of ASD.

RESULTS

(1) The correlation coefficient (-value) of the model exceeded 0.8 at the whole-brain level, with the highest value reaching 0.91. (2) -values of the ASD group amounted to 0.76 at the level of the whole brain and ranged from 0.66 to 0.7 at the level of the sub-brain regions. The mean value of the brain age gap estimate (Brain AGE) in the whole brain is 0.76 years; in the sub-brain model, was 0.64-1.18 years.

CONCLUSION

We constructed the EEG-Brain AGE prediction model, which can identify an individual's brain development and be used as a biomarker for the brain development assessment in ASD.

摘要

背景

自闭症谱系障碍(ASD)脑发育异常缺乏客观生物标志物。我们使用脑电图(EEG)和深度学习对ASD进行脑老化研究。

方法

(1)回顾性招募了659名健康儿童和98名ASD患者。(2)构建了基于门控循环单元(GRU)神经网络方法的自动脑电图-脑龄预测模型。(3)使用构建的模型,我们评估了ASD患者脑龄与健康对照者脑龄之间的差异,并评估了其在ASD临床评估中的可行性。

结果

(1)该模型在全脑水平的相关系数(值)超过0.8,最高值达到0.91。(2)ASD组在全脑水平的值为0.76,在脑亚区域水平范围为0.66至0.7。全脑脑龄差距估计值(脑龄)的平均值为0.76年;在脑亚区域模型中,为0.64 - 1.18年。

结论

我们构建了脑电图-脑龄预测模型,该模型可以识别个体的脑发育情况,并可作为ASD脑发育评估的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d9/12213353/0390aa8ca73b/fneur-16-1605291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验