Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00741-18. Print 2019 Sep 15.
Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. c-di-GMP levels regulate motility in in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here, we show that while c-di-GMP can influence stator localization, stators can in turn impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production under conditions not permissive to motility. This regulation implies a positive-feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help to define the bidirectional interactions between c-di-GMP and the flagellar machinery. The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a nonmotile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here, we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and the c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.
鞭毛运动对于许多细菌的表面附着和生物膜形成至关重要。环二鸟苷酸(c-di-GMP)是 和其他微生物中鞭毛运动的关键调节剂。这种第二信使的高水平抑制运动并刺激生物膜形成。c-di-GMP 水平通过影响其两个鞭毛定子组 MotAB 和 MotCD 的定位来调节 中的运动。在这里,我们表明,虽然 c-di-GMP 可以影响定子定位,但定子反过来也可以影响 c-di-GMP 水平。我们证明,群集运动驱动定子 MotC 与二鸟苷酸环化酶 SadC 的跨膜区域物理相互作用。此外,我们证明这种相互作用能够刺激 SadC 活性。我们提出了一个模型,即 MotCD 定子组与 SadC 相互作用,在不允许运动的条件下刺激 c-di-GMP 的产生。这种调节意味着正反馈回路,其中 c-di-GMP 信号事件导致 MotCD 定子与电机脱离;然后脱离的定子刺激 c-di-GMP 的产生,以加强生物膜生长模式。我们的研究有助于定义 c-di-GMP 和鞭毛机械之间的双向相互作用。细菌细胞在生物膜形成的早期阶段控制运动的能力对于向非运动、生物膜生活方式的转变至关重要。最近的研究清楚地表明,c-di-GMP 通过多种机制控制运动,包括通过控制与运动相关的基因的转录和调节运动功能。在这里,我们提供了运动组件可以反过来影响 c-di-GMP 水平的证据。我们提出,运动组件和 c-di-GMP 合成机制之间的通信允许细胞具有强大而敏感的切换机制,以控制生物膜形成早期事件中的运动。