Suppr超能文献

电纺纳米纤维支架气管置换的小鼠模型

Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds.

作者信息

Dharmadhikari Sayali, Best Cameron A, King Nakesha, Henderson Michaela, Johnson Jed, Breuer Christopher K, Chiang Tendy

机构信息

1 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.

2 Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA.

出版信息

Ann Otol Rhinol Laryngol. 2019 May;128(5):391-400. doi: 10.1177/0003489419826134. Epub 2019 Jan 30.

Abstract

OBJECTIVES

The clinical experience with tissue-engineered tracheal grafts (TETGs) has been fraught with graft stenosis and delayed epithelialization. A mouse model of orthotopic replacement that recapitulates the clinical findings would facilitate the study of the cellular and molecular mechanisms underlying graft stenosis.

METHODS

Electrospun nanofiber tracheal scaffolds were created using nonresorbable (polyethylene terephthalate + polyurethane) and co-electrospun resorbable (polylactide-co-caprolactone/polyglycolic acid) polymers (n = 10/group). Biomechanical testing was performed to compare load displacement of nanofiber scaffolds to native mouse tracheas. Mice underwent orthotopic tracheal replacement with syngeneic grafts (n = 5) and nonresorbable (n = 10) and resorbable (n = 10) scaffolds. Tissue at the anastomosis was evaluated using hematoxylin and eosin (H&E), K5+ basal cells were evaluated with the help of immunofluorescence testing, and cellular infiltration of the scaffold was quantified. Micro computed tomography was performed to assess graft patency and correlate radiographic and histologic findings with respiratory symptoms.

RESULTS

Synthetic scaffolds were supraphysiologic in compression tests compared to native mouse trachea ( P < .0001). Nonresorbable scaffolds were stiffer than resorbable scaffolds ( P = .0004). Eighty percent of syngeneic recipients survived to the study endpoint of 60 days postoperatively. Mean survival with nonresorbable scaffolds was 11.40 ± 7.31 days and 6.70 ± 3.95 days with resorbable scaffolds ( P = .095). Stenosis manifested with tissue overgrowth in nonresorbable scaffolds and malacia in resorbable scaffolds. Quantification of scaffold cellular infiltration correlated with length of survival in resorbable scaffolds (R = 0.95, P = .0051). Micro computed tomography demonstrated the development of graft stenosis at the distal anastomosis on day 5 and progressed until euthanasia was performed on day 11.

CONCLUSION

Graft stenosis seen in orthotopic tracheal replacement with synthetic tracheal scaffolds can be modeled in mice. The wide array of lineage tracing and transgenic mouse models available will permit future investigation of the cellular and molecular mechanisms underlying TETG stenosis.

摘要

目的

组织工程气管移植物(TETG)的临床应用一直饱受移植物狭窄和上皮化延迟之苦。一种能重现临床发现的原位置换小鼠模型将有助于研究移植物狭窄背后的细胞和分子机制。

方法

使用不可吸收(聚对苯二甲酸乙二酯+聚氨酯)和共电纺可吸收(聚丙交酯-共-己内酯/聚乙醇酸)聚合物制作电纺纳米纤维气管支架(每组n = 10)。进行生物力学测试以比较纳米纤维支架与天然小鼠气管的载荷位移。小鼠接受同基因移植物(n = 5)以及不可吸收(n = 10)和可吸收(n = 10)支架的原位气管置换。使用苏木精和伊红(H&E)对吻合处组织进行评估,借助免疫荧光测试评估K5 + 基底细胞,并对支架的细胞浸润进行定量分析。进行微型计算机断层扫描以评估移植物通畅情况,并将影像学和组织学结果与呼吸症状相关联。

结果

与天然小鼠气管相比,合成支架在压缩测试中表现出超生理状态(P <.0001)。不可吸收支架比可吸收支架更硬(P =.0004)。80%的同基因受体存活至术后60天的研究终点。不可吸收支架的平均存活时间为11.40±7.31天,可吸收支架为6.70±3.95天(P =.095)。狭窄表现为不可吸收支架中的组织过度生长和可吸收支架中的软化。支架细胞浸润的定量分析与可吸收支架中的存活时间相关(R = 0.95,P =.0051)。微型计算机断层扫描显示在第5天远端吻合处出现移植物狭窄,并持续发展直至在第11天实施安乐死。

结论

在小鼠中可以模拟用合成气管支架进行原位气管置换时出现的移植物狭窄。现有的大量谱系追踪和转基因小鼠模型将有助于未来对TETG狭窄背后的细胞和分子机制进行研究。

相似文献

1
Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds.
Ann Otol Rhinol Laryngol. 2019 May;128(5):391-400. doi: 10.1177/0003489419826134. Epub 2019 Jan 30.
3
Assessing the Biocompatibility and Regeneration of Electrospun-Nanofiber Composite Tracheal Grafts.
Laryngoscope. 2024 Mar;134(3):1155-1162. doi: 10.1002/lary.30955. Epub 2023 Aug 14.
5
Designing a tissue-engineered tracheal scaffold for preclinical evaluation.
Int J Pediatr Otorhinolaryngol. 2018 Jan;104:155-160. doi: 10.1016/j.ijporl.2017.10.036. Epub 2017 Nov 22.
6
Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement.
Otolaryngol Head Neck Surg. 2019 Sep;161(3):458-467. doi: 10.1177/0194599819844754. Epub 2019 Apr 30.
8
Tracheal Macrophages During Regeneration and Repair of Long-Segment Airway Defects.
Laryngoscope. 2022 Apr;132(4):737-746. doi: 10.1002/lary.29698. Epub 2021 Jun 21.
9
Effect of cell seeding on neotissue formation in a tissue engineered trachea.
J Pediatr Surg. 2016 Jan;51(1):49-55. doi: 10.1016/j.jpedsurg.2015.10.008. Epub 2015 Oct 22.

引用本文的文献

1
Characteristics of 3D-Printed Polycaprolactone Tracheal Scaffolds Implanted In Vivo.
Tissue Eng Regen Med. 2025 Aug 19. doi: 10.1007/s13770-025-00745-6.
2
Assessing the Biocompatibility and Regeneration of Electrospun-Nanofiber Composite Tracheal Grafts.
Laryngoscope. 2024 Mar;134(3):1155-1162. doi: 10.1002/lary.30955. Epub 2023 Aug 14.
3
Long-Term Chondrocyte Retention in Partially Decellularized Tracheal Grafts.
Otolaryngol Head Neck Surg. 2024 Jan;170(1):239-244. doi: 10.1002/ohn.409. Epub 2023 Jun 27.
4
Optimization of Chondrocyte Viability in Partially Decellularized Tracheal Grafts.
Otolaryngol Head Neck Surg. 2023 Nov;169(5):1241-1246. doi: 10.1002/ohn.404. Epub 2023 Jun 14.
6
Tissue-engineered composite tracheal grafts create mechanically stable and biocompatible airway replacements.
J Tissue Eng. 2022 Jun 26;13:20417314221108791. doi: 10.1177/20417314221108791. eCollection 2022 Jan-Dec.
7
The Growing Medical Need for Tracheal Replacement: Reconstructive Strategies Should Overcome Their Limits.
Front Bioeng Biotechnol. 2022 May 9;10:846632. doi: 10.3389/fbioe.2022.846632. eCollection 2022.
8
A Multimodal Approach to Quantify Chondrocyte Viability for Airway Tissue Engineering.
Laryngoscope. 2023 Mar;133(3):512-520. doi: 10.1002/lary.30206. Epub 2022 May 25.
9
Modulation of Synthetic Tracheal Grafts with Extracellular Matrix Coatings.
Bioengineering (Basel). 2021 Aug 20;8(8):116. doi: 10.3390/bioengineering8080116.
10
Regeneration of partially decellularized tracheal scaffolds in a mouse model of orthotopic tracheal replacement.
J Tissue Eng. 2021 Jun 6;12:20417314211017417. doi: 10.1177/20417314211017417. eCollection 2021 Jan-Dec.

本文引用的文献

1
U.K. trials of airway transplants are in limbo.
Science. 2018 Mar 30;359(6383):1448-1450. doi: 10.1126/science.359.6383.1448.
2
Designing a tissue-engineered tracheal scaffold for preclinical evaluation.
Int J Pediatr Otorhinolaryngol. 2018 Jan;104:155-160. doi: 10.1016/j.ijporl.2017.10.036. Epub 2017 Nov 22.
3
Morphological Analysis of Biocompatibility of Autologous Bone Marrow Mononuclear Cells with Synthetic Polyethylene Terephthalate Scaffold.
Bull Exp Biol Med. 2017 Jul;163(3):400-404. doi: 10.1007/s10517-017-3813-z. Epub 2017 Jul 26.
4
Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models.
Tissue Eng Part C Methods. 2017 Nov;23(11):728-735. doi: 10.1089/ten.TEC.2017.0217. Epub 2017 Sep 28.
5
Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair.
J Mech Behav Biomed Mater. 2017 Oct;74:411-427. doi: 10.1016/j.jmbbm.2017.05.008. Epub 2017 May 6.
6
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.
7
Endoscopic management of tissue-engineered tracheal graft stenosis in an ovine model.
Laryngoscope. 2017 Oct;127(10):2219-2224. doi: 10.1002/lary.26504. Epub 2017 Mar 27.
8
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14.
9
Clinical Translation of Tissue Engineered Trachea Grafts.
Ann Otol Rhinol Laryngol. 2016 Nov;125(11):873-885. doi: 10.1177/0003489416656646. Epub 2016 Jul 12.
10
Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers.
Adv Healthc Mater. 2016 Sep;5(18):2427-36. doi: 10.1002/adhm.201600400. Epub 2016 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验