Suppr超能文献

该基因的自然变异赋予了水稻抗冷性,使其能够适应温带气候。

Natural variation in the gene confers chilling tolerance in rice and allowed adaptation to a temperate climate.

机构信息

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Changsha, China.

National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3494-3501. doi: 10.1073/pnas.1819769116. Epub 2019 Feb 11.

Abstract

Rice ( L.) is a chilling-sensitive staple crop that originated in subtropical regions of Asia. Introduction of the chilling tolerance trait enables the expansion of rice cultivation to temperate regions. Here we report the cloning and characterization of , a quantitative trait locus (QTL) that confers chilling tolerance on temperate rice. encodes an oxidase that catalyzes the conversion of biologically active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile (12OH-JA-Ile) and fine-tunes the JA-mediated chilling response. Natural variants in diverged between and rice during domestication. A specific allele from temperate rice, which gained a putative MYB cis-element in the promoter of during the divergence of the two ecotypes, enhances the chilling tolerance of temperate rice and allows it to adapt to a temperate climate. The results of this study extend our understanding of the northward expansion of rice cultivation and provide a target gene for the improvement of chilling tolerance in rice.

摘要

水稻(L.)是一种喜冷的主要粮食作物,起源于亚洲亚热带地区。引入耐寒特性使水稻种植扩展到温带地区成为可能。在这里,我们报道了一个数量性状位点(QTL)的克隆和特征,该位点赋予温带水稻耐寒性。编码一种氧化酶,该酶催化生物活性茉莉酰基-L-异亮氨酸(JA-Ile)转化为非活性形式 12-羟基-JA-Ile(12OH-JA-Ile),并精细调节 JA 介导的冷响应。在驯化过程中,和水稻之间的自然变异在和之间发生分歧。来自温带水稻的一个特定等位基因,在这两个生态型分化过程中,在的启动子中获得了一个假定的 MYB 顺式元件,增强了温带水稻的耐寒性,使其能够适应温带气候。本研究结果扩展了我们对水稻向北种植扩展的理解,并为提高水稻耐寒性提供了一个靶基因。

相似文献

1
Natural variation in the gene confers chilling tolerance in rice and allowed adaptation to a temperate climate.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3494-3501. doi: 10.1073/pnas.1819769116. Epub 2019 Feb 11.
2
3
New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis.
Plant Cell Environ. 2016 Mar;39(3):556-70. doi: 10.1111/pce.12635. Epub 2015 Nov 14.
4
COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice.
New Phytol. 2024 Mar;241(5):2143-2157. doi: 10.1111/nph.19514. Epub 2024 Jan 3.
5
Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings.
Theor Appl Genet. 2015 Jan;128(1):173-85. doi: 10.1007/s00122-014-2420-x. Epub 2014 Nov 4.
7
Multiple Cold Tolerance Trait Phenotyping Reveals Shared Quantitative Trait Loci in Oryza sativa.
Rice (N Y). 2020 Aug 14;13(1):57. doi: 10.1186/s12284-020-00414-3.
8
OsJAR1 contributes mainly to biosynthesis of the stress-induced jasmonoyl-isoleucine involved in defense responses in rice.
Biosci Biotechnol Biochem. 2013;77(7):1556-64. doi: 10.1271/bbb.130272. Epub 2013 Jul 7.

引用本文的文献

3
4
Translational insights into abiotic interactions: From Arabidopsis to crop plants.
Plant Cell. 2025 Jul 1;37(7). doi: 10.1093/plcell/koaf140.
5
Integrating RNA-Seq and linkage mapping to identify and characterize , a cold tolerance QTL at the early seedling stage in rice.
Front Plant Sci. 2025 May 1;16:1580022. doi: 10.3389/fpls.2025.1580022. eCollection 2025.
6
Natural Variation of PH8 Allele Improves Architecture and Cold Tolerance in Rice.
Rice (N Y). 2025 May 13;18(1):35. doi: 10.1186/s12284-025-00793-5.
7
Suppressing an auxin efflux transporter enhances rice adaptation to temperate habitats.
Nat Commun. 2025 May 2;16(1):4100. doi: 10.1038/s41467-025-59449-z.
8
Comprehensive Analysis of Variations Using Pan-Genomics and Prime Editing in Rice.
Genes (Basel). 2025 Apr 17;16(4):462. doi: 10.3390/genes16040462.
10
Proteomes and ubiquitylomes reveal the regulation mechanism of cold tolerance mediated by in rice.
Front Plant Sci. 2025 Mar 21;16:1531399. doi: 10.3389/fpls.2025.1531399. eCollection 2025.

本文引用的文献

1
Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates.
Nat Commun. 2018 Aug 17;9(1):3302. doi: 10.1038/s41467-018-05753-w.
2
Identification of Genes Related to Cold Tolerance and a Functional Allele That Confers Cold Tolerance.
Plant Physiol. 2018 Jul;177(3):1108-1123. doi: 10.1104/pp.18.00209. Epub 2018 May 15.
3
Molecular Regulation of CBF Signaling in Cold Acclimation.
Trends Plant Sci. 2018 Jul;23(7):623-637. doi: 10.1016/j.tplants.2018.04.002. Epub 2018 May 4.
4
Genomic variation in 3,010 diverse accessions of Asian cultivated rice.
Nature. 2018 May;557(7703):43-49. doi: 10.1038/s41586-018-0063-9. Epub 2018 Apr 25.
5
Natural variation in CTB4a enhances rice adaptation to cold habitats.
Nat Commun. 2017 Mar 23;8:14788. doi: 10.1038/ncomms14788.
7
A novel functional gene associated with cold tolerance at the seedling stage in rice.
Plant Biotechnol J. 2017 Sep;15(9):1141-1148. doi: 10.1111/pbi.12704. Epub 2017 Mar 30.
9
Three geographically separate domestications of Asian rice.
Nat Plants. 2015 Nov 2;1:15164. doi: 10.1038/nplants.2015.164.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验