Suppr超能文献

衰老野生型和 SIRT6 缺陷小鼠中的去抑制驱动炎症。

LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation.

机构信息

Department of Biology, University of Rochester, Rochester, NY 14627, USA.

Department of Pathology, University of Rochester Medical Center, Rochester, NY 14627, USA.

出版信息

Cell Metab. 2019 Apr 2;29(4):871-885.e5. doi: 10.1016/j.cmet.2019.02.014. Epub 2019 Mar 7.

Abstract

Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.

摘要

SIRT6 缺失的小鼠表现出寿命严重缩短、生长迟缓以及 LINE1(L1)活性显著升高。在这里,我们报告 SIRT6 缺失的细胞和组织积累了丰富的细胞质 L1 cDNA,通过 cGAS 的激活引发强烈的 I 型干扰素反应。值得注意的是,核苷逆转录酶抑制剂(NRTIs)抑制 L1 反转录,可显著改善 SIRT6 敲除小鼠的健康和寿命,并完全挽救 I 型干扰素反应。在组织培养中,用 siRNA 或 NRTIs 抑制 L1 除了显著减少 DNA 损伤标志物外,还会阻断 I 型干扰素反应。这些结果表明 L1 的激活导致了 SIRT6 敲除小鼠的病理变化。同样,野生型老年小鼠的 L1 转录、细胞质 cDNA 拷贝数和 I 型干扰素水平升高。由于无菌性炎症是衰老的标志,我们提出调节 L1 活性可能是减轻与年龄相关的病理的重要策略。

相似文献

1
LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation.
Cell Metab. 2019 Apr 2;29(4):871-885.e5. doi: 10.1016/j.cmet.2019.02.014. Epub 2019 Mar 7.
2
Haploinsufficiency of dramatically extends the lifespan of Sirt6-deficient mice.
Elife. 2018 Feb 23;7:e32127. doi: 10.7554/eLife.32127.
7
Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling.
Cell Cycle. 2016;15(7):1009-18. doi: 10.1080/15384101.2016.1152427.
8
Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice.
J Biol Chem. 2012 Dec 7;287(50):41903-13. doi: 10.1074/jbc.M112.415182. Epub 2012 Oct 16.
9
Characterization of physiological defects in adult SIRT6-/- mice.
PLoS One. 2017 Apr 27;12(4):e0176371. doi: 10.1371/journal.pone.0176371. eCollection 2017.
10
Neuroprotective Functions for the Histone Deacetylase SIRT6.
Cell Rep. 2017 Mar 28;18(13):3052-3062. doi: 10.1016/j.celrep.2017.03.008.

引用本文的文献

1
Cytosolic DNA crosstalk in senescence: a new axis of inflammatory signaling?
EMBO J. 2025 Aug 29. doi: 10.1038/s44318-025-00531-z.
3
Senescence-Associated Chromatin Rewiring Promotes Inflammation and Transposable Element Activation.
bioRxiv. 2025 Jun 17:2025.06.11.659151. doi: 10.1101/2025.06.11.659151.
4
Single-Cell Transcriptome Patterns of Transposable Elements in Alzheimer's Disease.
Mol Neurobiol. 2025 Jun 19. doi: 10.1007/s12035-025-05140-9.
6
Fucoidans are senotherapeutics that enhance SIRT6-dependent DNA repair.
Res Sq. 2025 Jun 6:rs.3.rs-6613032. doi: 10.21203/rs.3.rs-6613032/v1.
7
MORE-RNAseq: a pipeline for quantifying retrotransposition-capable LINE1 expression based on RNA-seq data.
Front Bioinform. 2025 May 22;5:1575346. doi: 10.3389/fbinf.2025.1575346. eCollection 2025.
8
Potential roles of the sirtuins in promoting longevity for larger scallops.
Mar Life Sci Technol. 2025 Mar 4;7(2):284-301. doi: 10.1007/s42995-024-00269-3. eCollection 2025 May.
9
Exploring the Relationship of Transposable Elements and Ageing: Causes and Consequences.
Genome Biol Evol. 2025 May 30;17(6). doi: 10.1093/gbe/evaf088.
10
The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging.
Ageing Res Rev. 2025 Jul;109:102760. doi: 10.1016/j.arr.2025.102760. Epub 2025 May 1.

本文引用的文献

1
A whole lifespan mouse multi-tissue DNA methylation clock.
Elife. 2018 Nov 14;7:e40675. doi: 10.7554/eLife.40675.
2
The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer.
J Exp Med. 2018 May 7;215(5):1287-1299. doi: 10.1084/jem.20180139. Epub 2018 Apr 5.
4
Cytoplasmic chromatin triggers inflammation in senescence and cancer.
Nature. 2017 Oct 19;550(7676):402-406. doi: 10.1038/nature24050. Epub 2017 Oct 4.
5
Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation.
Cell Stem Cell. 2017 Sep 7;21(3):319-331.e8. doi: 10.1016/j.stem.2017.07.009. Epub 2017 Aug 10.
6
Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence.
Nat Cell Biol. 2017 Sep;19(9):1061-1070. doi: 10.1038/ncb3586. Epub 2017 Jul 31.
7
cGAS is essential for cellular senescence.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4612-E4620. doi: 10.1073/pnas.1705499114. Epub 2017 May 22.
8
Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions.
Cell Metab. 2017 Apr 4;25(4):954-960.e6. doi: 10.1016/j.cmet.2017.03.016.
10
The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes.
Microbiol Spectr. 2015 Apr;3(2):MDNA3-0061-2014. doi: 10.1128/microbiolspec.MDNA3-0061-2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验