Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
Department of Life Science, Faculty of Medicine, Shimane University, Izumo, Japan.
Blood. 2019 Jun 6;133(23):2495-2506. doi: 10.1182/blood.2019000468. Epub 2019 Mar 27.
Recurrent inactivating mutations have been identified in the X-linked plant homeodomain finger protein 6 () gene, encoding a chromatin-binding transcriptional regulator protein, in various hematological malignancies. However, the role of PHF6 in normal hematopoiesis and its tumor-suppressor function remain largely unknown. We herein generated mice carrying a floxed allele and inactivated in hematopoietic cells at various developmental stages. The deletion in embryos augmented the capacity of hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis in recipient mice. The deletion in neonates and adults revealed that cycling HSCs readily acquired an advantage in competitive repopulation upon the deletion, whereas dormant HSCs only did so after serial transplantations. -deficient HSCs maintained an enhanced repopulating capacity during serial transplantations; however, they did not induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly activated downstream effectors in tumor necrosis factor α (TNFα) signaling. The deletion repressed the expression of a set of genes associated with TNFα signaling, thereby conferring resistance against the TNFα-mediated growth inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal, implicating inactivating mutations in the pathogenesis of hematological malignancies, but also indicate that a deficiency alone is not sufficient to induce hematopoietic transformation.
已在各种血液恶性肿瘤中鉴定出 X 连锁植物同源域手指蛋白 6 () 基因中的反复失活突变,该基因编码染色质结合转录调节蛋白。然而,PHF6 在正常造血中的作用及其肿瘤抑制功能在很大程度上仍不清楚。我们在此生成了在各种发育阶段在造血细胞中携带 floxed 等位基因和失活的 的小鼠。胚胎中的 缺失增强了造血干细胞 (HSC) 在培养物中增殖的能力,并在受体小鼠中重建了造血。在新生儿和成年期的 缺失表明,在 缺失后,循环 HSC 很容易在竞争性重编程中获得优势,而休眠 HSC 仅在多次移植后才这样做。-缺陷的 HSC 在连续移植过程中保持增强的重编程能力;然而,它们不会引起任何血液系统恶性肿瘤。从机制上讲,Phf6 直接和间接激活了肿瘤坏死因子 α (TNFα) 信号下游效应物。 的缺失抑制了一组与 TNFα 信号相关的基因的表达,从而使 HSC 对 TNFα 介导的生长抑制产生抗性。总的来说,这些结果不仅定义了 Phf6 作为 HSC 自我更新的新型负调节剂,表明失活的 突变参与了血液系统恶性肿瘤的发病机制,而且还表明单独的 缺乏不足以诱导造血转化。