Suppr超能文献

应用于创伤后应激障碍的脑龄估计系统偏差研究。

Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders.

机构信息

School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania.

Department of Psychology, Drexel University, Philadelphia, Pennsylvania.

出版信息

Hum Brain Mapp. 2019 Aug 1;40(11):3143-3152. doi: 10.1002/hbm.24588. Epub 2019 Mar 28.

Abstract

Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long-standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6-89 years of age) from multiple shared datasets, we show this bias is neither data-dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi-modal neuroimaging data (N = 804; 8-21 years of age) for both healthy controls and post-traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.

摘要

使用机器学习技术预测大脑年龄最近引起了越来越多的关注,因为它有可能作为一种生物标志物来描述典型的大脑发育和神经精神障碍。然而,一个长期存在的问题是,预测的大脑年龄在年轻受试者中被高估,在老年受试者中被低估。关于这种偏差的来源,存在大量的说法,既有方法学上的,也有数据本身的。我们利用来自多个共享数据集的大型神经解剖学数据集(N=2026;6-89 岁)表明,这种偏差既不是数据依赖性的,也不是特定于特定方法(包括深度神经网络)的。我们提出了一种替代解释,为这种偏差提供了一个统计解释,并描述了一种使用广义线性模型来调整偏差的简单而有效的方法。我们使用来自费城神经发育队列的大型多模态神经影像学数据(N=804;8-21 岁),对健康对照组和创伤后应激障碍患者进行了偏差调整的有效性验证。

相似文献

1
Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders.
Hum Brain Mapp. 2019 Aug 1;40(11):3143-3152. doi: 10.1002/hbm.24588. Epub 2019 Mar 28.
3
Improved prediction of brain age using multimodal neuroimaging data.
Hum Brain Mapp. 2020 Apr 15;41(6):1626-1643. doi: 10.1002/hbm.24899. Epub 2019 Dec 14.
4
Diagnostic potential of multimodal neuroimaging in posttraumatic stress disorder.
PLoS One. 2017 May 30;12(5):e0177847. doi: 10.1371/journal.pone.0177847. eCollection 2017.
5
From a deep learning model back to the brain-Identifying regional predictors and their relation to aging.
Hum Brain Mapp. 2020 Aug 15;41(12):3235-3252. doi: 10.1002/hbm.25011. Epub 2020 Apr 22.
6
Generalization of diffusion magnetic resonance imaging-based brain age prediction model through transfer learning.
Neuroimage. 2020 Aug 15;217:116831. doi: 10.1016/j.neuroimage.2020.116831. Epub 2020 May 11.
8
An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement.
Neuroimage. 2018 Apr 15;170:482-494. doi: 10.1016/j.neuroimage.2017.08.021. Epub 2017 Aug 12.
9
Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme.
Neuroimage Clin. 2019;24:102063. doi: 10.1016/j.nicl.2019.102063. Epub 2019 Nov 4.

引用本文的文献

1
Current challenges and future directions for brain age prediction in children and adolescents.
Nat Commun. 2025 Aug 20;16(1):7771. doi: 10.1038/s41467-025-63222-7.
3
Investigating the impact of motion in the scanner on brain age predictions.
Imaging Neurosci (Camb). 2024 Feb 5;2. doi: 10.1162/imag_a_00079. eCollection 2024.
4
Accelerated brain ageing during the COVID-19 pandemic.
Nat Commun. 2025 Jul 22;16(1):6411. doi: 10.1038/s41467-025-61033-4.
5
Biological heart and brain ageing in subjects with cardiovascular diseases.
Front Cardiovasc Med. 2025 Jul 7;12:1569423. doi: 10.3389/fcvm.2025.1569423. eCollection 2025.
6
A predictive model of Parkinsonian brain aging based on brain imaging features.
Front Neurol. 2025 Jul 7;16:1584226. doi: 10.3389/fneur.2025.1584226. eCollection 2025.
7
Brain Age Prediction in Generalized Anxiety Disorder using a Convolutional Neural Network.
Res Sq. 2025 Jul 1:rs.3.rs-6866544. doi: 10.21203/rs.3.rs-6866544/v1.
8
10
Do Transformers and CNNs Learn Different Concepts of Brain Age?
Hum Brain Mapp. 2025 Jun 1;46(8):e70243. doi: 10.1002/hbm.70243.

本文引用的文献

1
A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE.
Front Aging Neurosci. 2018 Oct 24;10:317. doi: 10.3389/fnagi.2018.00317. eCollection 2018.
2
Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study.
Front Aging Neurosci. 2018 Aug 22;10:252. doi: 10.3389/fnagi.2018.00252. eCollection 2018.
3
Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms.
J Child Psychol Psychiatry. 2019 Feb;60(2):216-224. doi: 10.1111/jcpp.12963. Epub 2018 Aug 20.
4
Predicting Age From Brain EEG Signals-A Machine Learning Approach.
Front Aging Neurosci. 2018 Jul 2;10:184. doi: 10.3389/fnagi.2018.00184. eCollection 2018.
5
Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging.
Hum Brain Mapp. 2018 Dec;39(12):4663-4677. doi: 10.1002/hbm.24312. Epub 2018 Jul 13.
7
Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.
Trends Neurosci. 2017 Dec;40(12):681-690. doi: 10.1016/j.tins.2017.10.001. Epub 2017 Oct 23.
8
NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.
Neuroinformatics. 2018 Jan;16(1):43-49. doi: 10.1007/s12021-017-9346-9.
9
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.
Neuroimage. 2017 Dec;163:115-124. doi: 10.1016/j.neuroimage.2017.07.059. Epub 2017 Jul 29.
10
Predicting brain-age from multimodal imaging data captures cognitive impairment.
Neuroimage. 2017 Mar 1;148:179-188. doi: 10.1016/j.neuroimage.2016.11.005. Epub 2016 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验