Suppr超能文献

进退维谷:HIV 潜伏期逆转的挑战与进展。

Between a shock and a hard place: challenges and developments in HIV latency reversal.

机构信息

The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia.

The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.

出版信息

Curr Opin Virol. 2019 Oct;38:1-9. doi: 10.1016/j.coviro.2019.03.004. Epub 2019 Apr 29.

Abstract

Latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) are a major barrier to cure. One strategy to eliminate latency is by activating viral transcription, commonly called latency reversal. Several small non-randomised clinical trials of latency reversing agents (LRAs) in HIV-infected individuals on ART increased viral production, but disappointingly did not reduce the number of latently infected cells or delay time to viral rebound following cessation of ART. More recent approaches aimed at reversing latency include compounds that both activate virus and also modulate immunity to enhance clearance of infected cells. These immunomodulatory LRAs include toll-like receptor agonists, immune checkpoint inhibitors and some cytokines. Here, we provide a brief review of the rationale for transcription-activating and immunomodulatory LRAs, discuss recent clinical trials and some suggestions for combination approaches and research priorities for the future.

摘要

潜伏感染的细胞在接受抗逆转录病毒治疗 (ART) 的 HIV 感染者中持续存在,是治愈的主要障碍。消除潜伏感染的一种策略是激活病毒转录,通常称为潜伏逆转。几项针对接受 ART 的 HIV 感染者的潜伏逆转剂 (LRA) 的小型非随机临床试验增加了病毒的产生,但令人失望的是,并没有减少潜伏感染细胞的数量,也没有延迟停止 ART 后病毒反弹的时间。最近,人们试图通过逆转潜伏感染来治疗 HIV,包括既能激活病毒又能调节免疫以增强清除感染细胞的化合物。这些免疫调节 LRA 包括 Toll 样受体激动剂、免疫检查点抑制剂和一些细胞因子。在这里,我们简要回顾了转录激活和免疫调节 LRA 的原理,讨论了最近的临床试验,并对联合治疗方法和未来的研究重点提出了一些建议。

相似文献

1
Between a shock and a hard place: challenges and developments in HIV latency reversal.
Curr Opin Virol. 2019 Oct;38:1-9. doi: 10.1016/j.coviro.2019.03.004. Epub 2019 Apr 29.
3
Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents?
Curr Opin HIV AIDS. 2016 Jul;11(4):394-401. doi: 10.1097/COH.0000000000000279.
4
Bryostatin-1 Decreases HIV-1 Infection and Viral Production in Human Primary Macrophages.
J Virol. 2022 Feb 23;96(4):e0195321. doi: 10.1128/JVI.01953-21. Epub 2021 Dec 8.
5
Tracking HIV Rebound following Latency Reversal Using Barcoded HIV.
Cell Rep Med. 2020 Dec 22;1(9):100162. doi: 10.1016/j.xcrm.2020.100162.
6
Getting the "Kill" into "Shock and Kill": Strategies to Eliminate Latent HIV.
Cell Host Microbe. 2018 Jan 10;23(1):14-26. doi: 10.1016/j.chom.2017.12.004.
7
8
Maraviroc reactivates HIV with potency similar to that of other latency reversing drugs without inducing toxicity in CD8 T cells.
Biochem Pharmacol. 2020 Dec;182:114231. doi: 10.1016/j.bcp.2020.114231. Epub 2020 Sep 23.
9
Alternate NF-κB-Independent Signaling Reactivation of Latent HIV-1 Provirus.
J Virol. 2019 Aug 28;93(18). doi: 10.1128/JVI.00495-19. Print 2019 Sep 15.

引用本文的文献

2
Efficient mRNA delivery to resting T cells to reverse HIV latency.
Nat Commun. 2025 May 29;16(1):4979. doi: 10.1038/s41467-025-60001-2.
3
HIV Tat as a latency reversing agent: turning the tables on viral persistence.
Front Immunol. 2025 Apr 11;16:1571151. doi: 10.3389/fimmu.2025.1571151. eCollection 2025.
4
and HIV-1 latency reversal by "Mukungulu," a protein kinase C-activating African medicinal plant extract.
mBio. 2025 May 14;16(5):e0381624. doi: 10.1128/mbio.03816-24. Epub 2025 Apr 23.
6
Nuclear retention of unspliced HIV-1 RNA as a reversible post-transcriptional block in latency.
Nat Commun. 2025 Feb 28;16(1):2078. doi: 10.1038/s41467-025-57290-y.
8
Immune-mediated strategies to solving the HIV reservoir problem.
Nat Rev Immunol. 2025 Feb 13. doi: 10.1038/s41577-025-01136-7.
9
Bivalent SMAC mimetic APG-1387 reduces HIV reservoirs and limits viral rebound in humanized mice.
iScience. 2024 Nov 27;27(12):111470. doi: 10.1016/j.isci.2024.111470. eCollection 2024 Dec 20.
10
ORC1 enhances repressive epigenetic modifications on HIV-1 LTR to promote HIV-1 latency.
J Virol. 2024 Aug 20;98(8):e0003524. doi: 10.1128/jvi.00035-24. Epub 2024 Jul 31.

本文引用的文献

1
4
HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy.
Nat Microbiol. 2019 Apr;4(4):633-644. doi: 10.1038/s41564-018-0335-z. Epub 2019 Feb 4.
5
A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
Nature. 2019 Feb;566(7742):120-125. doi: 10.1038/s41586-019-0898-8. Epub 2019 Jan 30.
8
Liver as a target of human immunodeficiency virus infection.
World J Gastroenterol. 2018 Nov 14;24(42):4728-4737. doi: 10.3748/wjg.v24.i42.4728.
9
A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation.
Nat Commun. 2018 Nov 16;9(1):4811. doi: 10.1038/s41467-018-06843-5.
10
Gut and blood differ in constitutive blocks to HIV transcription, suggesting tissue-specific differences in the mechanisms that govern HIV latency.
PLoS Pathog. 2018 Nov 15;14(11):e1007357. doi: 10.1371/journal.ppat.1007357. eCollection 2018 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验