Suppr超能文献

高效算法发现癌症中具有互补功能关联的改变。

Efficient algorithms to discover alterations with complementary functional association in cancer.

机构信息

Department of Industrial Engineering and Operations Research, University of California at Berkeley, Berkeley, CA, USA.

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

PLoS Comput Biol. 2019 May 23;15(5):e1006802. doi: 10.1371/journal.pcbi.1006802. eCollection 2019 May.

Abstract

Recent large cancer studies have measured somatic alterations in an unprecedented number of tumours. These large datasets allow the identification of cancer-related sets of genetic alterations by identifying relevant combinatorial patterns. Among such patterns, mutual exclusivity has been employed by several recent methods that have shown its effectiveness in characterizing gene sets associated to cancer. Mutual exclusivity arises because of the complementarity, at the functional level, of alterations in genes which are part of a group (e.g., a pathway) performing a given function. The availability of quantitative target profiles, from genetic perturbations or from clinical phenotypes, provides additional information that can be leveraged to improve the identification of cancer related gene sets by discovering groups with complementary functional associations with such targets. In this work we study the problem of finding groups of mutually exclusive alterations associated with a quantitative (functional) target. We propose a combinatorial formulation for the problem, and prove that the associated computational problem is computationally hard. We design two algorithms to solve the problem and implement them in our tool UNCOVER. We provide analytic evidence of the effectiveness of UNCOVER in finding high-quality solutions and show experimentally that UNCOVER finds sets of alterations significantly associated with functional targets in a variety of scenarios. In particular, we show that our algorithms find sets which are better than the ones obtained by the state-of-the-art method, even when sets are evaluated using the statistical score employed by the latter. In addition, our algorithms are much faster than the state-of-the-art, allowing the analysis of large datasets of thousands of target profiles from cancer cell lines. We show that on two such datasets, one from project Achilles and one from the Genomics of Drug Sensitivity in Cancer project, UNCOVER identifies several significant gene sets with complementary functional associations with targets. Software available at: https://github.com/VandinLab/UNCOVER.

摘要

最近的大型癌症研究在前所未有的大量肿瘤中测量了体细胞改变。这些大型数据集允许通过识别相关的组合模式来识别与癌症相关的遗传改变集。在这些模式中,互斥性已被几种最近的方法采用,这些方法已经证明了其在表征与癌症相关的基因集方面的有效性。互斥性的出现是由于在基因水平上,处于执行给定功能的一组基因(例如,一条途径)中的基因改变具有互补性。从遗传扰动或临床表型获得定量目标谱提供了额外的信息,可以利用这些信息通过发现与这些目标具有互补功能关联的群体来改进与癌症相关基因集的识别。在这项工作中,我们研究了寻找与定量(功能)目标相关的互斥改变的问题。我们提出了一个组合公式来解决这个问题,并证明了相关的计算问题是计算上困难的。我们设计了两种算法来解决这个问题,并在我们的工具 UNCOVER 中实现了它们。我们提供了 UNCOVER 在寻找高质量解决方案方面的有效性的分析证据,并通过实验表明,UNCOVER 在各种情况下都能找到与功能目标显著相关的改变集。特别是,我们表明,我们的算法找到的集比最先进的方法获得的集更好,即使使用后者采用的统计评分来评估集。此外,我们的算法比最先进的方法快得多,允许对来自癌细胞系的数千个目标谱的大型数据集进行分析。我们表明,在 Achilles 项目和癌症药物敏感性基因组学项目的两个这样的数据集上,UNCOVER 确定了几个与目标具有互补功能关联的显著基因集。软件可在以下网址获得:https://github.com/VandinLab/UNCOVER。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd6/6550413/23808b0c776b/pcbi.1006802.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验