Suppr超能文献

EZH2 缺失重编程支链氨基酸代谢以驱动白血病转化。

Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation.

机构信息

Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.

Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

Cancer Discov. 2019 Sep;9(9):1228-1247. doi: 10.1158/2159-8290.CD-19-0152. Epub 2019 Jun 12.

Abstract

Epigenetic gene regulation and metabolism are highly intertwined, yet little is known about whether altered epigenetics influence cellular metabolism during cancer progression. Here, we show that EZH2 and NRAS mutations cooperatively induce progression of myeloproliferative neoplasms to highly penetrant, transplantable, and lethal myeloid leukemias in mice. EZH1, an EZH2 homolog, is indispensable for EZH2-deficient leukemia-initiating cells and constitutes an epigenetic vulnerability. BCAT1, which catalyzes the reversible transamination of branched-chain amino acids (BCAA), is repressed by EZH2 in normal hematopoiesis and aberrantly activated in EZH2-deficient myeloid neoplasms in mice and humans. BCAT1 reactivation cooperates with NRAS to sustain intracellular BCAA pools, resulting in enhanced mTOR signaling in EZH2-deficient leukemia cells. Genetic and pharmacologic inhibition of BCAT1 selectively impairs EZH2-deficient leukemia-initiating cells and constitutes a metabolic vulnerability. Hence, epigenetic alterations rewire intracellular metabolism during leukemic transformation, causing epigenetic and metabolic vulnerabilities in cancer-initiating cells. SIGNIFICANCE: EZH2 inactivation and oncogenic NRAS cooperate to induce leukemic transformation of myeloproliferative neoplasms by activating BCAT1 to enhance BCAA metabolism and mTOR signaling. We uncover a mechanism by which epigenetic alterations rewire metabolism during cancer progression, causing epigenetic and metabolic liabilities in cancer-initiating cells that may be exploited as potential therapeutics...

摘要

表观遗传基因调控和代谢密切相关,但目前尚不清楚表观遗传学的改变是否会影响癌症进展过程中的细胞代谢。在这里,我们展示了 EZH2 和 NRAS 突变协同诱导骨髓增生性肿瘤向高穿透性、可移植性和致死性骨髓性白血病的进展。EZH1 是 EZH2 的同源物,对于 EZH2 缺陷的白血病起始细胞是必不可少的,并且构成了表观遗传脆弱性。BCAT1 催化支链氨基酸 (BCAA) 的可逆转氨基作用,在正常造血中受 EZH2 抑制,在小鼠和人类中 EZH2 缺陷的髓性肿瘤中异常激活。BCAT1 的重新激活与 NRAS 合作,维持细胞内 BCAA 池,导致 EZH2 缺陷的白血病细胞中 mTOR 信号增强。BCAT1 的遗传和药理学抑制选择性地损害 EZH2 缺陷的白血病起始细胞,并构成代谢脆弱性。因此,表观遗传改变在白血病转化过程中重新布线细胞内代谢,导致起始细胞中的表观遗传和代谢脆弱性。意义:EZH2 失活和致癌 NRAS 合作通过激活 BCAT1 来增强 BCAA 代谢和 mTOR 信号,诱导骨髓增生性肿瘤的白血病转化。我们揭示了一种机制,即表观遗传改变在癌症进展过程中重新布线代谢,导致起始细胞中的表观遗传和代谢负债,这可能被用作潜在的治疗方法。

相似文献

1
Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation.
Cancer Discov. 2019 Sep;9(9):1228-1247. doi: 10.1158/2159-8290.CD-19-0152. Epub 2019 Jun 12.
2
Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity.
Cancer Cell. 2018 Jan 8;33(1):44-59.e8. doi: 10.1016/j.ccell.2017.11.012. Epub 2017 Dec 21.
5
Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.
Nature. 2017 May 25;545(7655):500-504. doi: 10.1038/nature22314. Epub 2017 May 17.
6
An "EZ" Epigenetic Road to Leukemia Stem Cell Metabolic Reprogramming?
Cancer Discov. 2019 Sep;9(9):1158-1160. doi: 10.1158/2159-8290.CD-19-0737.
7
EZH2 in Myeloid Malignancies.
Cells. 2020 Jul 8;9(7):1639. doi: 10.3390/cells9071639.
8
Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function.
Blood Adv. 2023 Jul 25;7(14):3592-3603. doi: 10.1182/bloodadvances.2022008242.
9
Double sword role of EZH2 in leukemia.
Biomed Pharmacother. 2018 Feb;98:626-635. doi: 10.1016/j.biopha.2017.12.059. Epub 2017 Dec 29.
10
p53-/- synergizes with enhanced NrasG12D signaling to transform megakaryocyte-erythroid progenitors in acute myeloid leukemia.
Blood. 2017 Jan 19;129(3):358-370. doi: 10.1182/blood-2016-06-719237. Epub 2016 Nov 4.

引用本文的文献

1
2
EZH2-TTP-mTORC1 Axis Drives Phenotypic Plasticity and Therapeutic Vulnerability in Lethal Prostate Cancer.
bioRxiv. 2025 Aug 11:2025.08.07.669104. doi: 10.1101/2025.08.07.669104.
3
Exploiting an Epigenetic Resistance Mechanism to PI3 Kinase Inhibition in Leukemic Stem Cells.
bioRxiv. 2025 Jul 15:2025.07.11.663968. doi: 10.1101/2025.07.11.663968.
4
Unveiling the Maze: Branched-Chain Amino Acids Fueling the Dynamics of Cancer Metabolism and Progression.
Cancers (Basel). 2025 May 23;17(11):1751. doi: 10.3390/cancers17111751.
5
BCAA metabolism in cancer progression and therapy resistance: The balance between fuel and cell signaling.
Front Pharmacol. 2025 May 14;16:1595176. doi: 10.3389/fphar.2025.1595176. eCollection 2025.
6
Histone modifications in the regulation of erythropoiesis.
Ann Med. 2025 Dec;57(1):2490824. doi: 10.1080/07853890.2025.2490824. Epub 2025 Apr 11.
7
Multiple roles of branched-chain amino acid metabolism in tumour progression.
J Biomed Sci. 2025 Apr 9;32(1):41. doi: 10.1186/s12929-025-01132-y.
9
PPDPF-mediated regulation of BCAA metabolism enhances mTORC1 activity and drives cholangiocarcinoma progression.
Oncogene. 2025 May;44(19):1415-1433. doi: 10.1038/s41388-025-03320-4. Epub 2025 Mar 1.
10
CD44-mediated metabolic rewiring is a targetable dependency of IDH-mutant leukemia.
Blood. 2025 Apr 3;145(14):1553-1567. doi: 10.1182/blood.2024027207.

本文引用的文献

1
Functional genomic landscape of acute myeloid leukaemia.
Nature. 2018 Oct;562(7728):526-531. doi: 10.1038/s41586-018-0623-z. Epub 2018 Oct 17.
2
Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma.
Cell. 2018 Sep 20;175(1):101-116.e25. doi: 10.1016/j.cell.2018.08.038. Epub 2018 Sep 13.
3
Targeted next-generation sequencing in blast phase myeloproliferative neoplasms.
Blood Adv. 2018 Feb 27;2(4):370-380. doi: 10.1182/bloodadvances.2018015875.
4
Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.
Cancer Cell. 2018 Feb 12;33(2):274-291.e8. doi: 10.1016/j.ccell.2018.01.006.
6
Targeted deep sequencing in polycythemia vera and essential thrombocythemia.
Blood Adv. 2016 Nov 22;1(1):21-30. doi: 10.1182/bloodadvances.2016000216. eCollection 2016 Nov 29.
7
BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation.
Nature. 2017 Nov 16;551(7680):384-388. doi: 10.1038/nature24294. Epub 2017 Nov 8.
8
In Situ Capture of Chromatin Interactions by Biotinylated dCas9.
Cell. 2017 Aug 24;170(5):1028-1043.e19. doi: 10.1016/j.cell.2017.08.003.
9
Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.
Nature. 2017 May 25;545(7655):500-504. doi: 10.1038/nature22314. Epub 2017 May 17.
10
Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation.
Nat Cell Biol. 2017 Jun;19(6):626-638. doi: 10.1038/ncb3527. Epub 2017 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验