Suppr超能文献

CFTR 增强剂作用热点的结构鉴定。

Structural identification of a hotspot on CFTR for potentiation.

机构信息

Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY 10065, USA.

Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA.

出版信息

Science. 2019 Jun 21;364(6446):1184-1188. doi: 10.1126/science.aaw7611.

Abstract

Cystic fibrosis is a fatal disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Two main categories of drugs are being developed: correctors that improve folding of CFTR and potentiators that recover the function of CFTR. Here, we report two cryo-electron microscopy structures of human CFTR in complex with potentiators: one with the U.S. Food and Drug Administration (FDA)-approved drug ivacaftor at 3.3-angstrom resolution and the other with an investigational drug, GLPG1837, at 3.2-angstrom resolution. These two drugs, although chemically dissimilar, bind to the same site within the transmembrane region. Mutagenesis suggests that in both cases, hydrogen bonds provided by the protein are important for drug recognition. The molecular details of how ivacaftor and GLPG1837 interact with CFTR may facilitate structure-based optimization of therapeutic compounds.

摘要

囊性纤维化是一种由囊性纤维化跨膜电导调节因子(CFTR)突变引起的致命疾病。目前正在开发两类药物:一种是改善 CFTR 折叠的校正剂,另一种是恢复 CFTR 功能的增敏剂。在这里,我们报告了人类 CFTR 与增敏剂复合物的两个冷冻电镜结构:一个分辨率为 3.3 埃的是与美国食品和药物管理局(FDA)批准的药物 ivacaftor 复合的,另一个分辨率为 3.2 埃的是与一种研究药物 GLPG1837 复合的。这两种药物虽然化学结构不同,但都结合在跨膜区域的相同部位。突变分析表明,在这两种情况下,蛋白质提供的氢键对于药物识别都很重要。ivacaftor 和 GLPG1837 与 CFTR 相互作用的分子细节可能有助于基于结构的治疗化合物的优化。

相似文献

1
Structural identification of a hotspot on CFTR for potentiation.
Science. 2019 Jun 21;364(6446):1184-1188. doi: 10.1126/science.aaw7611.
2
Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770.
J Gen Physiol. 2019 Jul 1;151(7):912-928. doi: 10.1085/jgp.201912360. Epub 2019 Jun 4.
3
Novel Correctors and Potentiators Enhance Translational Readthrough in CFTR Nonsense Mutations.
Am J Respir Cell Mol Biol. 2021 May;64(5):604-616. doi: 10.1165/rcmb.2019-0291OC.
4
Mutation-specific dual potentiators maximize rescue of CFTR gating mutants.
J Cyst Fibros. 2020 Mar;19(2):236-244. doi: 10.1016/j.jcf.2019.10.011. Epub 2019 Oct 31.
5
GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease.
Int J Mol Sci. 2020 Jun 24;21(12):4486. doi: 10.3390/ijms21124486.
7
Structure-based discovery of CFTR potentiators and inhibitors.
Cell. 2024 Jul 11;187(14):3712-3725.e34. doi: 10.1016/j.cell.2024.04.046. Epub 2024 May 28.
8
A common mechanism for CFTR potentiators.
J Gen Physiol. 2017 Dec 4;149(12):1105-1118. doi: 10.1085/jgp.201711886. Epub 2017 Oct 27.
9
Corrector combination therapies for F508del-CFTR.
Curr Opin Pharmacol. 2017 Jun;34:105-111. doi: 10.1016/j.coph.2017.09.016. Epub 2017 Nov 5.
10
GLPG1837, a CFTR potentiator, in p.Gly551Asp (G551D)-CF patients: An open-label, single-arm, phase 2a study (SAPHIRA1).
J Cyst Fibros. 2019 Sep;18(5):693-699. doi: 10.1016/j.jcf.2019.05.006. Epub 2019 May 27.

引用本文的文献

1
Thermodynamic Coupling between Folding Correctors and the First of Dimerized Nucleotide Binding Domains in CFTR.
ACS Bio Med Chem Au. 2025 Jul 30;5(4):593-601. doi: 10.1021/acsbiomedchemau.5c00014. eCollection 2025 Aug 20.
2
Thermodynamic basis for CFTR activity potentiation.
Res Sq. 2025 Aug 12:rs.3.rs-7339733. doi: 10.21203/rs.3.rs-7339733/v1.
3
Structure of CFTR bound to (R)-BPO-27 unveils a pore-blockage mechanism.
Nat Commun. 2025 Aug 1;16(1):7059. doi: 10.1038/s41467-025-62199-7.
6
Unifying perspectives on the activity and genotypic targeting of pharmacological chaperones.
J Biol Chem. 2025 Jun 18;301(7):110375. doi: 10.1016/j.jbc.2025.110375.
7
A large-scale curated and filterable dataset for cryo-EM foundation model pre-training.
Sci Data. 2025 Jun 7;12(1):960. doi: 10.1038/s41597-025-05179-2.

本文引用的文献

1
Molecular structure of the ATP-bound, phosphorylated human CFTR.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12757-12762. doi: 10.1073/pnas.1815287115. Epub 2018 Nov 20.
2
VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.
N Engl J Med. 2018 Oct 25;379(17):1599-1611. doi: 10.1056/NEJMoa1807119. Epub 2018 Oct 18.
3
VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.
N Engl J Med. 2018 Oct 25;379(17):1612-1620. doi: 10.1056/NEJMoa1807120. Epub 2018 Oct 18.
5
Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del.
N Engl J Med. 2017 Nov 23;377(21):2013-2023. doi: 10.1056/NEJMoa1709846. Epub 2017 Nov 3.
6
A common mechanism for CFTR potentiators.
J Gen Physiol. 2017 Dec 4;149(12):1105-1118. doi: 10.1085/jgp.201711886. Epub 2017 Oct 27.
7
Testing inhomogeneous solvation theory in structure-based ligand discovery.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6839-E6846. doi: 10.1073/pnas.1703287114. Epub 2017 Jul 31.
8
Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
Cell. 2017 Jul 27;170(3):483-491.e8. doi: 10.1016/j.cell.2017.06.041. Epub 2017 Jul 20.
9
Molecular Structure of the Human CFTR Ion Channel.
Cell. 2017 Mar 23;169(1):85-95.e8. doi: 10.1016/j.cell.2017.02.024.
10
Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.
Cell. 2016 Dec 1;167(6):1586-1597.e9. doi: 10.1016/j.cell.2016.11.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验