Suppr超能文献

大规模数据集可预测原发性 T 细胞经 CRISPR-Cas9 编辑后的修复情况。

Large dataset enables prediction of repair after CRISPR-Cas9 editing in primary T cells.

机构信息

Chan-Zuckerberg Biohub, San Francisco, CA, USA.

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Biotechnol. 2019 Sep;37(9):1034-1037. doi: 10.1038/s41587-019-0203-2. Epub 2019 Jul 29.

Abstract

Understanding of repair outcomes after Cas9-induced DNA cleavage is still limited, especially in primary human cells. We sequence repair outcomes at 1,656 on-target genomic sites in primary human T cells and use these data to train a machine learning model, which we have called CRISPR Repair Outcome (SPROUT). SPROUT accurately predicts the length, probability and sequence of nucleotide insertions and deletions, and will facilitate design of SpCas9 guide RNAs in therapeutically important primary human cells.

摘要

对 Cas9 诱导的 DNA 切割后的修复结果的理解仍然有限,特别是在原代人细胞中。我们在原代人 T 细胞中的 1656 个靶标基因组位点上对修复结果进行测序,并使用这些数据来训练机器学习模型,我们称之为 CRISPR 修复结果(SPROUT)。SPROUT 可准确预测核苷酸插入和缺失的长度、概率和序列,并将有助于设计在治疗上重要的原代人细胞中的 SpCas9 向导 RNA。

相似文献

1
Large dataset enables prediction of repair after CRISPR-Cas9 editing in primary T cells.
Nat Biotechnol. 2019 Sep;37(9):1034-1037. doi: 10.1038/s41587-019-0203-2. Epub 2019 Jul 29.
2
Genome Editing with CRISPR-Cas9: Can It Get Any Better?
J Genet Genomics. 2016 May 20;43(5):239-50. doi: 10.1016/j.jgg.2016.04.008. Epub 2016 Apr 24.
3
Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells.
Mol Cell. 2021 Sep 2;81(17):3637-3649.e5. doi: 10.1016/j.molcel.2021.07.035.
4
CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
Methods Mol Biol. 2020;2115:351-364. doi: 10.1007/978-1-0716-0290-4_19.
5
[Design of Guide RNA for CRISPR/Cas Plant Genome Editing].
Mol Biol (Mosk). 2020 Jan-Feb;54(1):29-50. doi: 10.31857/S0026898420010061.
8
Baculovirus-based genome editing in primary cells.
Plasmid. 2017 Mar;90:5-9. doi: 10.1016/j.plasmid.2017.01.003. Epub 2017 Jan 22.
9
Precise genomic deletions using paired prime editing.
Nat Biotechnol. 2022 Feb;40(2):218-226. doi: 10.1038/s41587-021-01025-z. Epub 2021 Oct 14.
10
Optimization of genome editing through CRISPR-Cas9 engineering.
Bioengineered. 2016 Apr;7(3):166-74. doi: 10.1080/21655979.2016.1189039.

引用本文的文献

1
A bioinformatic analysis of gene editing off-target loci altered by common polymorphisms, using 'PopOff'.
J R Soc N Z. 2024 May 9;55(6):2440-2463. doi: 10.1080/03036758.2024.2347968. eCollection 2025.
2
Revolutionizing CRISPR technology with artificial intelligence.
Exp Mol Med. 2025 Jul;57(7):1419-1431. doi: 10.1038/s12276-025-01462-9. Epub 2025 Jul 31.
3
X-CRISP: domain-adaptable and interpretable CRISPR repair outcome prediction.
Bioinform Adv. 2025 Jul 2;5(1):vbaf157. doi: 10.1093/bioadv/vbaf157. eCollection 2025.
4
Refined DNA repair manipulation enables a universal knock-in strategy in mouse embryos.
Nat Commun. 2025 Jul 15;16(1):6502. doi: 10.1038/s41467-025-61696-z.
6
X-CRISP: Domain-Adaptable and Interpretable CRISPR Repair Outcome Prediction.
bioRxiv. 2025 Apr 23:2025.02.06.636858. doi: 10.1101/2025.02.06.636858.
7
Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR.
J Transl Med. 2025 Feb 4;23(1):153. doi: 10.1186/s12967-024-06013-w.
8
A tool for CRISPR-Cas9 sgRNA evaluation based on computational models of gene expression.
Genome Med. 2024 Dec 23;16(1):152. doi: 10.1186/s13073-024-01420-6.
9
The interplay of DNA repair context with target sequence predictably biases Cas9-generated mutations.
Nat Commun. 2024 Nov 27;15(1):10271. doi: 10.1038/s41467-024-54566-7.
10
CRISPRepi: a multi-omic atlas for CRISPR-based epigenome editing.
Nucleic Acids Res. 2025 Jan 6;53(D1):D901-D913. doi: 10.1093/nar/gkae1039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验