Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA.
Roche Molecular Solutions, Inc., Pleasanton, CA 94588, USA.
Bioinformatics. 2020 Jan 15;36(2):524-532. doi: 10.1093/bioinformatics/btz589.
Meta-analysis methods have been widely used to combine results from multiple clinical or genomic studies to increase statistical powers and ensure robust and accurate conclusions. The adaptively weighted Fisher's method (AW-Fisher), initially developed for omics applications but applicable for general meta-analysis, is an effective approach to combine P-values from K independent studies and to provide better biological interpretability by characterizing which studies contribute to the meta-analysis. Currently, AW-Fisher suffers from the lack of fast P-value computation and variability estimate of AW weights. When the number of studies K is large, the 3K - 1 possible differential expression pattern categories generated by AW-Fisher can become intractable. In this paper, we develop an importance sampling scheme with spline interpolation to increase the accuracy and speed of the P-value calculation. We also apply bootstrapping to construct a variability index for the AW-Fisher weight estimator and a co-membership matrix to categorize (cluster) differentially expressed genes based on their meta-patterns for intuitive biological investigations.
The superior performance of the proposed methods is shown in simulations as well as two real omics meta-analysis applications to demonstrate its insightful biological findings.
An R package AWFisher (calling C++) is available at Bioconductor and GitHub (https://github.com/Caleb-Huo/AWFisher), and all datasets and programing codes for this paper are available in the Supplementary Material.
Supplementary data are available at Bioinformatics online.
元分析方法已被广泛用于结合来自多个临床或基因组研究的结果,以增加统计能力并确保稳健和准确的结论。最初为组学应用开发但适用于一般元分析的自适应加权 Fisher 方法(AW-Fisher)是一种有效的方法,可用于组合 K 个独立研究的 P 值,并通过描述哪些研究对元分析有贡献来提供更好的生物学可解释性。目前,AW-Fisher 缺乏快速的 P 值计算和 AW 权重变异性估计。当研究数量 K 很大时,AW-Fisher 生成的 3K−1 个可能的差异表达模式类别可能变得难以处理。在本文中,我们开发了一种带有样条插值的重要性抽样方案,以提高 P 值计算的准确性和速度。我们还应用了自举法来构建 AW-Fisher 权重估计量的变异性指数和共成员矩阵,根据它们的元模式对差异表达基因进行分类(聚类),以便直观地进行生物学研究。
所提出方法的优越性能在模拟以及两个真实的组学元分析应用中得到了展示,以证明其具有洞察力的生物学发现。
AWFisher(调用 C++)的 R 包可在 Bioconductor 和 GitHub(https://github.com/Caleb-Huo/AWFisher)上获得,本文的所有数据集和编程代码都可在补充材料中获得。
补充数据可在 Bioinformatics 在线获得。