Suppr超能文献

缓慢的生长决定了 的非遗传性抗生素耐药性。

Slow growth determines nonheritable antibiotic resistance in .

机构信息

Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.

Microbial Sciences Institute, Yale University, P.O. Box 27389, West Haven, CT 06516, USA.

出版信息

Sci Signal. 2019 Jul 30;12(592):eaax3938. doi: 10.1126/scisignal.aax3938.

Abstract

Bacteria can withstand killing by bactericidal antibiotics through phenotypic changes mediated by their preexisting genetic repertoire. These changes can be exhibited transiently by a large fraction of the bacterial population, giving rise to tolerance, or displayed by a small subpopulation, giving rise to persistence. Apart from undermining the use of antibiotics, tolerant and persistent bacteria foster the emergence of antibiotic-resistant mutants. Persister formation has been attributed to alterations in the abundance of particular proteins, metabolites, and signaling molecules, including toxin-antitoxin modules, adenosine triphosphate, and guanosine (penta) tetraphosphate, respectively. Here, we report that persistent bacteria form as a result of slow growth alone, despite opposite changes in the abundance of such proteins, metabolites, and signaling molecules. Our findings argue that transitory disturbances to core activities, which are often linked to cell growth, promote a persister state regardless of the underlying physiological process responsible for the change in growth.

摘要

细菌可以通过其预先存在的遗传库介导的表型变化来抵抗杀菌抗生素的杀伤。这些变化可以使细菌种群的很大一部分暂时表现出来,从而产生耐受性,或者由一小部分亚群表现出来,从而产生持久性。除了破坏抗生素的使用外,耐受和持久的细菌还助长了抗生素耐药突变体的出现。持久性的形成归因于特定蛋白质、代谢物和信号分子(包括毒素-抗毒素模块、三磷酸腺苷和鸟苷(五)四磷酸盐)丰度的改变。在这里,我们报告说,尽管这些蛋白质、代谢物和信号分子的丰度发生了相反的变化,但持久的细菌仍然是由于生长缓慢而形成的。我们的发现表明,尽管导致生长变化的基础生理过程不同,但核心活动的短暂干扰(通常与细胞生长有关)会促进持久状态。

相似文献

1
Slow growth determines nonheritable antibiotic resistance in .
Sci Signal. 2019 Jul 30;12(592):eaax3938. doi: 10.1126/scisignal.aax3938.
2
A Physiological Basis for Nonheritable Antibiotic Resistance.
mBio. 2020 Jun 16;11(3):e00817-20. doi: 10.1128/mBio.00817-20.
4
The RNA-Binding Protein ProQ Promotes Antibiotic Persistence in Salmonella.
mBio. 2022 Dec 20;13(6):e0289122. doi: 10.1128/mbio.02891-22. Epub 2022 Nov 21.
6
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.
7
Computational Methods to Model Persistence.
Methods Mol Biol. 2016;1333:207-40. doi: 10.1007/978-1-4939-2854-5_17.
8
Persister formation in Staphylococcus aureus is associated with ATP depletion.
Nat Microbiol. 2016 Apr 18;1:16051. doi: 10.1038/nmicrobiol.2016.51.
9
Toxin-Antitoxin Systems: A Key Role on Persister Formation in Serovar Typhimurium.
Infect Drug Resist. 2022 Oct 3;15:5813-5829. doi: 10.2147/IDR.S378157. eCollection 2022.

引用本文的文献

4
The impact of bacterial purine metabolism on antibiotic efficacy.
NPJ Antimicrob Resist. 2025 Aug 4;3(1):69. doi: 10.1038/s44259-025-00139-7.
5
Bioenergetic stress potentiates antimicrobial resistance and persistence.
Nat Commun. 2025 Jun 9;16(1):5111. doi: 10.1038/s41467-025-60302-6.
6
A shared alarmone-GTP switch controls persister formation in bacteria.
Nat Microbiol. 2025 May 15. doi: 10.1038/s41564-025-02015-6.
7
Cytoplasmic Mg supersedes carbon source preference to dictate metabolism.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2424337122. doi: 10.1073/pnas.2424337122. Epub 2025 Mar 25.
8
Limited impact of Salmonella stress and persisters on antibiotic clearance.
Nature. 2025 Mar;639(8053):181-189. doi: 10.1038/s41586-024-08506-6. Epub 2025 Feb 5.
9
A shared alarmone-GTP switch underlies triggered and spontaneous persistence.
Res Sq. 2025 Jan 3:rs.3.rs-5679108. doi: 10.21203/rs.3.rs-5679108/v1.
10
Regulated resource reallocation is transcriptionally hard wired into the yeast stress response.
bioRxiv. 2024 Dec 4:2024.12.03.626567. doi: 10.1101/2024.12.03.626567.

本文引用的文献

1
Targeting Cancer Cell Dormancy.
Trends Pharmacol Sci. 2019 Feb;40(2):128-141. doi: 10.1016/j.tips.2018.12.004. Epub 2019 Jan 3.
2
Elucidating the role of (p)ppGpp in mycobacterial persistence against antibiotics.
IUBMB Life. 2018 Sep;70(9):836-844. doi: 10.1002/iub.1888. Epub 2018 Aug 9.
3
Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells.
J Bacteriol. 2018 Sep 24;200(20). doi: 10.1128/JB.00249-18. Print 2018 Oct 15.
5
(p)ppGpp Controls Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin Activity.
Cell. 2018 Feb 22;172(5):1135. doi: 10.1016/j.cell.2018.02.023.
6
Protein synthesis controls phosphate homeostasis.
Genes Dev. 2018 Jan 1;32(1):79-92. doi: 10.1101/gad.309245.117. Epub 2018 Feb 1.
7
ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors.
Cancer Res. 2018 Feb 15;78(4):1044-1057. doi: 10.1158/0008-5472.CAN-17-1904. Epub 2017 Dec 19.
9
Antibiotic tolerance facilitates the evolution of resistance.
Science. 2017 Feb 24;355(6327):826-830. doi: 10.1126/science.aaj2191. Epub 2017 Feb 9.
10
ATP-Dependent Persister Formation in Escherichia coli.
mBio. 2017 Feb 7;8(1):e02267-16. doi: 10.1128/mBio.02267-16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验