Suppr超能文献

BORIS 促进治疗抵抗性癌细胞中的染色质调控相互作用。

BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells.

机构信息

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

出版信息

Nature. 2019 Aug;572(7771):676-680. doi: 10.1038/s41586-019-1472-0. Epub 2019 Aug 7.

Abstract

The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation or DNA hypermethylation results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL), is overexpressed in several cancers, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.

摘要

CCCTC 结合因子(CTCF)通过促进或限制基因与其调控元件之间的相互作用,在基因调控中起核心作用,它将基因组组织成结构域的 DNA 环锚定。在癌细胞中,体细胞突变或 DNA 超甲基化导致特定位置的 CTCF 结合中断,导致环锚丢失,随后激活癌基因。相比之下,CTCF 的生殖细胞特异性同源物 BORIS(印迹位点调控因子的兄弟,也称为 CTCFL)在几种癌症中过表达,但它对恶性表型的贡献仍不清楚。在这里,我们表明 BORIS 的异常上调促进了在对 ALK 抑制产生耐药性的 ALK 突变、MYCN 扩增神经母细胞瘤细胞中的染色质相互作用。在获得耐药性的过程中,这些细胞被重新编程为一种独特的表型状态,这一过程的特征是最初 MYCN 表达的丧失,随后 BORIS 的过度表达,以及细胞对 MYCN 的依赖性向 BORIS 的转变。由此产生的 BORIS 调节的染色质环looping 的改变导致了超级增强子的形成,驱动了一组前神经转录因子的异位表达,最终定义了耐药表型。这些结果确定了 BORIS 促进支持特定癌症表型的调节染色质相互作用的先前未被认识的作用。

相似文献

1
BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells.
Nature. 2019 Aug;572(7771):676-680. doi: 10.1038/s41586-019-1472-0. Epub 2019 Aug 7.
4
Discovering a binary CTCF code with a little help from BORIS.
Nucleus. 2018 Jan 1;9(1):33-41. doi: 10.1080/19491034.2017.1394536. Epub 2017 Dec 5.
6
CTCF cooperates with noncoding RNA MYCNOS to promote neuroblastoma progression through facilitating MYCN expression.
Oncogene. 2016 Jul 7;35(27):3565-76. doi: 10.1038/onc.2015.422. Epub 2015 Nov 9.
7
Thrown for a Loop: Awakening BORIS to Evade ALK Inhibition Therapy.
Cancer Cell. 2019 Oct 14;36(4):345-347. doi: 10.1016/j.ccell.2019.09.009.
8
CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2020-2031. doi: 10.1073/pnas.1911708117. Epub 2020 Jan 14.
10
BORIS/CTCFL expression activates the TGFβ signaling cascade and induces Drp1 mediated mitochondrial fission in neuroblastoma.
Free Radic Biol Med. 2021 Nov 20;176:62-72. doi: 10.1016/j.freeradbiomed.2021.09.010. Epub 2021 Sep 14.

引用本文的文献

1
Nonchromatin regulatory functions of the histone variant H2A.B in SWI/SNF genomic deposition.
Sci Adv. 2025 Jul 25;11(30):eadx1568. doi: 10.1126/sciadv.adx1568.
2
Pioneer factor GATA6 promotes colorectal cancer through 3D genome regulation.
Sci Adv. 2025 Feb 7;11(6):eads4985. doi: 10.1126/sciadv.ads4985.
3
Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications.
Redox Biol. 2024 Dec;78:103441. doi: 10.1016/j.redox.2024.103441. Epub 2024 Nov 23.
5
Atractyloside inhibits gefitinib‑resistant non‑small‑cell lung cancer cell proliferation.
Oncol Lett. 2024 Jul 30;28(4):466. doi: 10.3892/ol.2024.14599. eCollection 2024 Oct.
6
The MYCN 5' UTR as a therapeutic target in neuroblastoma.
Cell Rep. 2024 May 28;43(5):114134. doi: 10.1016/j.celrep.2024.114134. Epub 2024 Apr 23.
9
Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis.
Int J Mol Sci. 2023 Oct 6;24(19):14945. doi: 10.3390/ijms241914945.

本文引用的文献

1
Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry.
Nat Genet. 2018 Sep;50(9):1240-1246. doi: 10.1038/s41588-018-0191-z. Epub 2018 Aug 20.
2
Choice of binding sites for CTCFL compared to CTCF is driven by chromatin and by sequence preference.
Nucleic Acids Res. 2018 Aug 21;46(14):7097-7107. doi: 10.1093/nar/gky483.
3
SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis.
Science. 2018 May 18;360(6390):800-805. doi: 10.1126/science.aao2793. Epub 2018 Apr 5.
4
bHLH transcription factors in neural development, disease, and reprogramming.
Brain Res. 2019 Feb 15;1705:48-65. doi: 10.1016/j.brainres.2018.03.013. Epub 2018 Mar 12.
5
Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma.
Nat Genet. 2018 Apr;50(4):515-523. doi: 10.1038/s41588-018-0044-9. Epub 2018 Jan 29.
6
Overcoming Resistance to the THZ Series of Covalent Transcriptional CDK Inhibitors.
Cell Chem Biol. 2018 Feb 15;25(2):135-142.e5. doi: 10.1016/j.chembiol.2017.11.007. Epub 2017 Dec 21.
7
diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data.
Bioinformatics. 2018 Feb 15;34(4):672-674. doi: 10.1093/bioinformatics/btx623.
9
Massively parallel digital transcriptional profiling of single cells.
Nat Commun. 2017 Jan 16;8:14049. doi: 10.1038/ncomms14049.
10
HiChIP: efficient and sensitive analysis of protein-directed genome architecture.
Nat Methods. 2016 Nov;13(11):919-922. doi: 10.1038/nmeth.3999. Epub 2016 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验