Suppr超能文献

非小细胞肺癌生物学和治疗中的共发生基因组改变。

Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy.

机构信息

Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Nat Rev Cancer. 2019 Sep;19(9):495-509. doi: 10.1038/s41568-019-0179-8. Epub 2019 Aug 12.

Abstract

The impressive clinical activity of small-molecule receptor tyrosine kinase inhibitors for oncogene-addicted subgroups of non-small-cell lung cancer (for example, those driven by activating mutations in the gene encoding epidermal growth factor receptor (EGFR) or rearrangements in the genes encoding the receptor tyrosine kinases anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 (ROS1) and rearranged during transfection (RET)) has established an oncogene-centric molecular classification paradigm in this disease. However, recent studies have revealed considerable phenotypic diversity downstream of tumour-initiating oncogenes. Co-occurring genomic alterations, particularly in tumour suppressor genes such as TP53 and LKB1 (also known as STK11), have emerged as core determinants of the molecular and clinical heterogeneity of oncogene-driven lung cancer subgroups through their effects on both tumour cell-intrinsic and non-cell-autonomous cancer hallmarks. In this Review, we discuss the impact of co-mutations on the pathogenesis, biology, microenvironmental interactions and therapeutic vulnerabilities of non-small-cell lung cancer and assess the challenges and opportunities that co-mutations present for personalized anticancer therapy, as well as the expanding field of precision immunotherapy.

摘要

小分子受体酪氨酸激酶抑制剂在非小细胞肺癌(例如,由编码表皮生长因子受体(EGFR)的基因中的激活突变或受体酪氨酸激酶间变性淋巴瘤激酶(ALK)、ROS 原癌基因 1(ROS1)和重排期间转染(RET)的基因中的重排驱动的那些)的癌基因成瘾亚组中的令人印象深刻的临床活性,在这种疾病中确立了一个以癌基因为中心的分子分类范例。然而,最近的研究揭示了起始肿瘤的癌基因下游相当大的表型多样性。共同发生的基因组改变,特别是肿瘤抑制基因,如 TP53 和 LKB1(也称为 STK11),通过其对肿瘤细胞内在和非细胞自主的癌症特征的影响,成为驱动癌基因的肺癌亚组的分子和临床异质性的核心决定因素。在这篇综述中,我们讨论了共突变对非小细胞肺癌发病机制、生物学、微环境相互作用和治疗脆弱性的影响,并评估了共突变对个体化抗癌治疗以及日益扩大的精准免疫治疗领域带来的挑战和机遇。

相似文献

1
Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy.
Nat Rev Cancer. 2019 Sep;19(9):495-509. doi: 10.1038/s41568-019-0179-8. Epub 2019 Aug 12.
2
ROS1 Fusions Rarely Overlap with Other Oncogenic Drivers in Non-Small Cell Lung Cancer.
J Thorac Oncol. 2017 May;12(5):872-877. doi: 10.1016/j.jtho.2017.01.004. Epub 2017 Jan 11.
7
Immunotherapy for oncogenic-driven advanced non-small cell lung cancers: Is the time ripe for a change?
Cancer Treat Rev. 2018 Dec;71:47-58. doi: 10.1016/j.ctrv.2018.10.006. Epub 2018 Oct 15.

引用本文的文献

2
CREPT promotes LUAD progression by enhancing the CDK9 and RNAPII assembly to promote ERK-driven gene transcription.
Theranostics. 2025 Jul 25;15(16):8337-8359. doi: 10.7150/thno.115572. eCollection 2025.
3
Combining recombinant human endostatin with third-generation EGFR-TKIs in advanced EGFR-sensitive mutant non-small cell lung cancer.
J Thorac Dis. 2025 Jul 31;17(7):5223-5237. doi: 10.21037/jtd-2025-1223. Epub 2025 Jul 25.
4
Orthotopically Implanted Murine Lung Adenocarcinoma Cell Lines for Preclinical Investigations.
Cancers (Basel). 2025 Jul 22;17(15):2424. doi: 10.3390/cancers17152424.
6
Dual-targeted N-PMI@CA nanoplatform for concurrent MDM2 and β-catenin inhibition in p53 wild-type lung adenocarcinoma.
Mater Today Bio. 2025 Jul 26;34:102136. doi: 10.1016/j.mtbio.2025.102136. eCollection 2025 Oct.
7
Real-world single-center data analysis of dual immunotherapy in advanced NSCLC: Efficacy, survival, and adverse events.
Hum Vaccin Immunother. 2025 Dec;21(1):2542068. doi: 10.1080/21645515.2025.2542068. Epub 2025 Aug 4.
9
Molecular Landscape of Metastatic Lung Adenocarcinoma in Bulgarian Patients-A Prospective Study.
Int J Mol Sci. 2025 Jul 21;26(14):7017. doi: 10.3390/ijms26147017.
10
Co-Occurring Genomic Alterations in NSCLC: Making Order into a Crowded List.
Cancers (Basel). 2025 Jul 18;17(14):2388. doi: 10.3390/cancers17142388.

本文引用的文献

1
Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma.
Cell. 2019 Jun 13;177(7):1842-1857.e21. doi: 10.1016/j.cell.2019.05.013. Epub 2019 May 30.
2
LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in -Mutant Lung Adenocarcinoma.
Cancer Res. 2019 Jul 1;79(13):3251-3267. doi: 10.1158/0008-5472.CAN-18-3527. Epub 2019 Apr 30.
3
Cooperation between Noncanonical Ras Network Mutations.
Cell Rep. 2015 Feb 10;10(5):840. doi: 10.1016/j.celrep.2015.01.048. Epub 2015 Feb 11.
5
EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes.
J Clin Oncol. 2019 Feb 1;37(4):278-285. doi: 10.1200/JCO.18.01585. Epub 2018 Dec 14.
6
A Phase I/Ib Trial of the VEGFR-Sparing Multikinase RET Inhibitor RXDX-105.
Cancer Discov. 2019 Mar;9(3):384-395. doi: 10.1158/2159-8290.CD-18-0839. Epub 2018 Nov 28.
7
Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study.
Lancet Oncol. 2018 Dec;19(12):1654-1667. doi: 10.1016/S1470-2045(18)30649-1. Epub 2018 Nov 6.
8
Concurrent Genetic Alterations Predict the Progression to Target Therapy in EGFR-Mutated Advanced NSCLC.
J Thorac Oncol. 2019 Feb;14(2):193-202. doi: 10.1016/j.jtho.2018.10.150. Epub 2018 Nov 1.
9
Deletion of in Tumor but not Endothelial Cells Improves Radiation Response in a Primary Mouse Model of Lung Adenocarcinoma.
Cancer Res. 2019 Feb 15;79(4):773-782. doi: 10.1158/0008-5472.CAN-17-3103. Epub 2018 Oct 12.
10
Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy.
Science. 2018 Oct 12;362(6411). doi: 10.1126/science.aar3593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验