Suppr超能文献

HyPhy 2.5-A 可定制的基于系统发生树的进化假说检验平台。

HyPhy 2.5-A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies.

机构信息

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA.

Pathology and Laboratory Medicine, Western University, London, ON, Canada.

出版信息

Mol Biol Evol. 2020 Jan 1;37(1):295-299. doi: 10.1093/molbev/msz197.

Abstract

HYpothesis testing using PHYlogenies (HyPhy) is a scriptable, open-source package for fitting a broad range of evolutionary models to multiple sequence alignments, and for conducting subsequent parameter estimation and hypothesis testing, primarily in the maximum likelihood statistical framework. It has become a popular choice for characterizing various aspects of the evolutionary process: natural selection, evolutionary rates, recombination, and coevolution. The 2.5 release (available from www.hyphy.org) includes a completely re-engineered computational core and analysis library that introduces new classes of evolutionary models and statistical tests, delivers substantial performance and stability enhancements, improves usability, streamlines end-to-end analysis workflows, makes it easier to develop custom analyses, and is mostly backward compatible with previous HyPhy releases.

摘要

使用 PHYlogenies (HyPhy) 进行假设检验是一个可脚本化的、开源的包,用于将广泛的进化模型拟合到多个序列比对中,并进行随后的参数估计和假设检验,主要是在最大似然统计框架内。它已成为描述进化过程各个方面的流行选择:自然选择、进化率、重组和共进化。2.5 版本(可从 www.hyphy.org 获得)包括一个完全重新设计的计算核心和分析库,引入了新类别的进化模型和统计检验,提供了实质性的性能和稳定性增强,提高了可用性,简化了端到端分析工作流程,使开发自定义分析变得更加容易,并与以前的 HyPhy 版本基本向后兼容。

相似文献

1
HyPhy 2.5-A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies.
Mol Biol Evol. 2020 Jan 1;37(1):295-299. doi: 10.1093/molbev/msz197.
2
HyPhy: hypothesis testing using phylogenies.
Bioinformatics. 2005 Mar 1;21(5):676-9. doi: 10.1093/bioinformatics/bti079. Epub 2004 Oct 27.
3
4
Relative evolutionary rate inference in HyPhy with LEISR.
PeerJ. 2018 Feb 5;6:e4339. doi: 10.7717/peerj.4339. eCollection 2018.
5
Detecting Amino Acid Coevolution with Bayesian Graphical Models.
Methods Mol Biol. 2019;1851:105-122. doi: 10.1007/978-1-4939-8736-8_6.
6
MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.
Bioinformatics. 2012 Oct 15;28(20):2685-6. doi: 10.1093/bioinformatics/bts507. Epub 2012 Aug 24.
7
Robust inference of positive selection from recombining coding sequences.
Bioinformatics. 2006 Oct 15;22(20):2493-9. doi: 10.1093/bioinformatics/btl427. Epub 2006 Aug 7.
8
Extra base hits: Widespread empirical support for instantaneous multiple-nucleotide changes.
PLoS One. 2021 Mar 12;16(3):e0248337. doi: 10.1371/journal.pone.0248337. eCollection 2021.
10
paPAML: An Improved Computational Tool to Explore Selection Pressure on Protein-Coding Sequences.
Genes (Basel). 2022 Jun 18;13(6):1090. doi: 10.3390/genes13061090.

引用本文的文献

1
TCR germline diversity reveals evidence of natural selection on variable and joining alpha chain genes.
bioRxiv. 2025 Aug 24:2025.08.20.671277. doi: 10.1101/2025.08.20.671277.
3
Positive selection at core genes may underlie niche adaptation in Fusobacterium animalis.
Gut Pathog. 2025 Aug 11;17(1):61. doi: 10.1186/s13099-025-00740-1.
6
Positive Selection Drives Mitochondrial Gene Rearrangement in Sternorrhyncha (Insecta: Hemiptera).
Ecol Evol. 2025 Jul 20;15(7):e71789. doi: 10.1002/ece3.71789. eCollection 2025 Jul.
7
EpiMolBio: A novel user-friendly bioinformatic program for genetic variability analysis.
Comput Struct Biotechnol J. 2025 Jun 26;27:2968-2975. doi: 10.1016/j.csbj.2025.06.034. eCollection 2025.
9
Widespread variation in is associated with diverse melanin loss phenotypes across avian species.
bioRxiv. 2025 Jun 14:2025.06.13.659395. doi: 10.1101/2025.06.13.659395.

本文引用的文献

2
BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis.
PLoS Comput Biol. 2019 Apr 8;15(4):e1006650. doi: 10.1371/journal.pcbi.1006650. eCollection 2019 Apr.
3
Bioconda: sustainable and comprehensive software distribution for the life sciences.
Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7.
4
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
5
Cloud computing for genomic data analysis and collaboration.
Nat Rev Genet. 2018 May;19(5):325. doi: 10.1038/nrg.2018.8. Epub 2018 Feb 12.
6
Relative evolutionary rate inference in HyPhy with LEISR.
PeerJ. 2018 Feb 5;6:e4339. doi: 10.7717/peerj.4339. eCollection 2018.
7
The State of Software for Evolutionary Biology.
Mol Biol Evol. 2018 May 1;35(5):1037-1046. doi: 10.1093/molbev/msy014.
8
9
RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language.
Syst Biol. 2016 Jul;65(4):726-36. doi: 10.1093/sysbio/syw021. Epub 2016 May 28.
10
Gene-wide identification of episodic selection.
Mol Biol Evol. 2015 May;32(5):1365-71. doi: 10.1093/molbev/msv035. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验