Abrol Anees, Fu Zening, Du Yuhui, Calhoun Vince D
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4409-4413. doi: 10.1109/EMBC.2019.8856500.
Early prediction of diseased brain conditions is critical for curing illness and preventing irreversible neuronal dysfunction and loss. Generically regarding the different neuroimaging modalities as filtered, complementary insights of brain's anatomical and functional organization, multimodal data fusion could be hypothesized to enhance the predictive power as compared to a unimodal prediction of disease progression. More recently, deep learning (DL) based methods on structural MRI (sMRI) data have outperformed classical machine learning approaches in several neuroimaging applications including diagnostic classification and prediction. Similarly, functional MRI (fMRI) features estimated using a dynamic (i.e. time-varying) functional connectivity (FC) approach have been found to be more discriminative and predictive of the clinical diagnosis than those based on the static FC approach. Motivated by this, we introduce a novel multimodal data fusion framework featuring deep residual learning of non-linear sMRI features and dynamic FC (dFC) based extraction of fMRI features to predict the subset of individuals with mild cognitive impairments who would progress to Alzheimer's disease within a time-period of three years from the baseline scanning sessions. Our cross-validated results from the developed multimodal (sMRI-fMRI) data fusion framework demonstrate a significant improvement in performance over the unimodal prediction analyses with the fMRI (p = 7.03 x 10) and sMRI (p = 6.72 x 10) modalities. As such, the findings in this work highlight the benefits of combining multiple neuroimaging data modalities via data fusion, corroborate the predictive value of the tested DL and dFC features and argue in favor of exploration of similar approaches to learn neuroanatomical and functional alterations in the neuroimaging data.
早期预测脑部疾病状况对于治愈疾病以及预防不可逆的神经元功能障碍和损失至关重要。一般而言,不同的神经成像模态可被视为对大脑解剖和功能组织的过滤后的互补性见解,因此可以假设多模态数据融合与单模态疾病进展预测相比能够增强预测能力。最近,基于深度学习(DL)的结构磁共振成像(sMRI)数据方法在包括诊断分类和预测在内的多个神经成像应用中表现优于传统机器学习方法。同样,已发现使用动态(即时变)功能连接(FC)方法估计的功能磁共振成像(fMRI)特征比基于静态FC方法的特征在临床诊断方面更具区分性和预测性。受此启发,我们引入了一种新颖的多模态数据融合框架,其特点是对非线性sMRI特征进行深度残差学习,并基于动态FC(dFC)提取fMRI特征,以预测在基线扫描会话后的三年内将进展为阿尔茨海默病的轻度认知障碍个体子集。我们从开发的多模态(sMRI-fMRI)数据融合框架中得到的交叉验证结果表明,与使用fMRI(p = 7.03 x 10)和sMRI(p = 6.72 x 10)模态的单模态预测分析相比,性能有显著提高。因此,这项工作中的发现突出了通过数据融合组合多种神经成像数据模态的好处,证实了所测试的DL和dFC特征的预测价值,并主张探索类似方法以了解神经成像数据中的神经解剖和功能改变。