Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France.
INSERM U1201, Paris, France.
mBio. 2020 Jan 21;11(1):e03054-19. doi: 10.1128/mBio.03054-19.
The human malaria parasite uses mutually exclusive expression of the PfEMP1-encoding gene family to evade the host immune system. Despite progress in the molecular understanding of the default silencing mechanism, the activation mechanism of the uniquely expressed member remains elusive. A GC-rich noncoding RNA (ncRNA) gene family has coevolved with species that express genes. Here, we show that this ncRNA family is transcribed in a clonally variant manner, with predominant transcription of a single member occurring when the ncRNA is located adjacent to and upstream of an active gene. We developed a specific CRISPR interference (CRISPRi) strategy that allowed for the transcriptional repression of all GC-rich members. A lack of GC-rich ncRNA transcription led to the downregulation of the entire gene family in ring-stage parasites. Strikingly, in mature blood-stage parasites, the GC-rich ncRNA CRISPRi affected the transcription patterns of other clonally variant gene families, including the downregulation of all members. We provide evidence for the key role of GC-rich ncRNA transcription in gene activation and discovered a molecular link between the transcriptional control of various clonally variant multigene families involved in parasite virulence. This work opens new avenues for elucidating the molecular processes that control immune evasion and pathogenesis in is the deadliest malaria parasite species, accounting for the vast majority of disease cases and deaths. The virulence of this parasite is reliant upon the mutually exclusive expression of cytoadherence proteins encoded by the 60-member gene family. Antigenic variation of this multigene family serves as an immune evasion mechanism, ultimately leading to chronic infection and pathogenesis. Understanding the regulation mechanism of antigenic variation is key to developing new therapeutic and control strategies. Our study uncovers a novel layer in the epigenetic regulation of transcription of this family of virulence genes by means of a multigene-targeting CRISPR interference approach.
人类疟疾寄生虫利用 PfEMP1 编码基因家族的相互排斥表达来逃避宿主免疫系统。尽管在分子水平上对默认沉默机制的理解取得了进展,但独特表达成员的激活机制仍然难以捉摸。一个富含 GC 的非编码 RNA(ncRNA)基因家族与表达 PfEMP1 基因的物种共同进化。在这里,我们表明,该 ncRNA 家族以克隆变异的方式转录,当 ncRNA 位于活性 PfEMP1 基因的相邻上游时,单一成员的主要转录发生。我们开发了一种特定的 CRISPR 干扰(CRISPRi)策略,该策略可以转录抑制所有富含 GC 的成员。缺乏富含 GC 的 ncRNA 转录导致环状阶段寄生虫中整个 PfEMP1 基因家族的下调。引人注目的是,在成熟的血液阶段寄生虫中,GC 丰富的 ncRNA CRISPRi 影响了其他克隆变异基因家族的转录模式,包括所有 PfEMP1 成员的下调。我们为 GC 丰富的 ncRNA 转录在 PfEMP1 基因激活中的关键作用提供了证据,并发现了参与寄生虫毒力的各种克隆变异多基因家族转录控制之间的分子联系。这项工作为阐明控制 PfEMP1 免疫逃避和发病机制的分子过程开辟了新的途径,PfEMP1 是最致命的疟疾寄生虫物种,占绝大多数疾病病例和死亡人数。这种寄生虫的毒力依赖于细胞粘附蛋白的相互排斥表达,这些蛋白由 60 个成员的 PfEMP1 基因家族编码。这个多基因家族的抗原变异是一种免疫逃避机制,最终导致慢性感染和发病机制。了解抗原变异的调节机制是开发新的治疗和控制策略的关键。我们的研究通过一种多基因靶向 CRISPRi 方法揭示了这种毒力基因家族转录的表观遗传调控的一个新层面。