Suppr超能文献

CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。

Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing.

机构信息

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.

Biomics Biotechnologies co. Ltd, Nantong, 226016, Jiangsu Province, China.

出版信息

Sci Rep. 2020 Feb 10;10(1):2269. doi: 10.1038/s41598-020-58627-x.

Abstract

To explore the editing specificity of CRISPR/Cpf1 system, effects of target mutation were systematically examined using a reporter activation assay, with a set of single-nucleotide mutated target site. Consistent with our previous study performed with CRISPR/Cas9, a "core" sequence region that is highly sensitive to target mutation was characterized. The region is of 4-nucleotide long, located from +4 to +7 position of the target site, and positioned within a positively charged central channel when assembled into Cpf1 endonuclease. Single-nucleotide mutation at the core sequence could abolish gene editing mediated by a however active sgRNA. With a great majority of the target sites, a kind of 'super' off-target gene editing was observed with both CRISPR/Cpf1 and CRISPR/Cas9. For a given target site, mutation at certain positions led to greatly enhanced off-target gene editing efficacy, even up to 10-fold of that of the fully-matched target. Study further found that these effects were determined by the identity of target nucleotide, rather than the nucleotide of crRNA. This likely suggests that the interactions between target nucleotide and the endonuclease are involved in this process.

摘要

为了探索 CRISPR/Cpf1 系统的编辑特异性,我们使用报告基因激活测定法系统地检查了靶突变的影响,使用了一组单核苷酸突变的靶位点。与我们之前使用 CRISPR/Cas9 进行的研究一致,我们鉴定了一个“核心”序列区域,该区域对靶突变高度敏感。该区域长 4 个核苷酸,位于靶位点的+4 到+7 位,当组装成 Cpf1 内切酶时,位于带正电荷的中央通道内。核心序列中的单核苷酸突变可以使然而活性 sgRNA 介导的基因编辑失效。对于绝大多数靶位点,我们观察到 CRISPR/Cpf1 和 CRISPR/Cas9 都存在一种“超级”脱靶基因编辑。对于给定的靶位点,某些位置的突变导致脱靶基因编辑效率大大增强,甚至达到完全匹配靶位的 10 倍。研究进一步发现,这些效应是由靶核苷酸的身份决定的,而不是 crRNA 的核苷酸。这可能表明靶核苷酸与内切酶之间的相互作用参与了这一过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a22/7010781/d763417a16c8/41598_2020_58627_Fig1_HTML.jpg

相似文献

1
Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing.
Sci Rep. 2020 Feb 10;10(1):2269. doi: 10.1038/s41598-020-58627-x.
3
Harnessing noncanonical crRNA for highly efficient genome editing.
Nat Commun. 2024 May 7;15(1):3823. doi: 10.1038/s41467-024-48012-x.
4
CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9.
Cell Biol Toxicol. 2019 Dec;35(6):489-492. doi: 10.1007/s10565-019-09489-1. Epub 2019 Aug 29.
5
Gene Disruption Using Chemically Modified CRISPR-Cpf1 RNA.
Methods Mol Biol. 2021;2162:49-60. doi: 10.1007/978-1-0716-0687-2_4.
6
Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing.
Mol Plant. 2018 Apr 2;11(4):542-552. doi: 10.1016/j.molp.2018.02.005. Epub 2018 Feb 17.
7
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
8
Partial DNA-guided Cas9 enables genome editing with reduced off-target activity.
Nat Chem Biol. 2018 Mar;14(3):311-316. doi: 10.1038/nchembio.2559. Epub 2018 Jan 29.
9
Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
Methods Mol Biol. 2021;2162:185-193. doi: 10.1007/978-1-0716-0687-2_10.
10
A Survey of Genome Editing Activity for 16 Cas12a Orthologs.
Keio J Med. 2020 Sep 25;69(3):59-65. doi: 10.2302/kjm.2019-0009-OA. Epub 2019 Nov 14.

引用本文的文献

1
Emerging Gene Therapeutics for Epidermolysis Bullosa under Development.
Int J Mol Sci. 2024 Feb 13;25(4):2243. doi: 10.3390/ijms25042243.
2
A pipeline for identifying guide RNA sequences that promote RNA editing of nonsense mutations that cause inherited retinal diseases.
Mol Ther Nucleic Acids. 2024 Jan 30;35(1):102130. doi: 10.1016/j.omtn.2024.102130. eCollection 2024 Mar 12.
3
A conditional RNA Pol II mono-promoter drives HIV-inducible, CRISPR-mediated cyclin T1 suppression and HIV inhibition.
Mol Ther Nucleic Acids. 2023 Apr 19;32:553-565. doi: 10.1016/j.omtn.2023.04.011. eCollection 2023 Jun 13.
4
The CRISPR/Cas System: A Customizable Toolbox for Molecular Detection.
Genes (Basel). 2023 Mar 31;14(4):850. doi: 10.3390/genes14040850.
5
Genome Editing and Fatty Liver.
Adv Exp Med Biol. 2023;1396:191-206. doi: 10.1007/978-981-19-5642-3_13.
6
Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses.
Plants (Basel). 2022 Oct 6;11(19):2625. doi: 10.3390/plants11192625.
7
Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World.
Plants (Basel). 2022 May 12;11(10):1297. doi: 10.3390/plants11101297.
9
Analysis of a Cas12a-based gene-drive system in budding yeast.
Access Microbiol. 2021 Dec 17;3(12):000301. doi: 10.1099/acmi.0.000301. eCollection 2021.
10
Scalable Manufacturing of CAR T cells for Cancer Immunotherapy.
Blood Cancer Discov. 2021 Sep;2(5):408-422. doi: 10.1158/2643-3230.BCD-21-0084. Epub 2021 Aug 3.

本文引用的文献

2
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
3
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):869-74. doi: 10.1038/nbt.3620. Epub 2016 Jun 27.
4
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):863-8. doi: 10.1038/nbt.3609. Epub 2016 Jun 6.
5
Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA.
Cell. 2016 May 5;165(4):949-62. doi: 10.1016/j.cell.2016.04.003. Epub 2016 Apr 21.
6
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.
7
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
8
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.
Cell. 2015 Oct 22;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub 2015 Sep 25.
9
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature. 2014 Sep 25;513(7519):569-73. doi: 10.1038/nature13579. Epub 2014 Jul 27.
10
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
Nat Biotechnol. 2014 Jul;32(7):677-83. doi: 10.1038/nbt.2916. Epub 2014 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验