Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
EMBO Rep. 2020 Apr 3;21(4):e49113. doi: 10.15252/embr.201949113. Epub 2020 Feb 11.
Mitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans. Here we show that mtON photoactivation increases the PMF in a dose-dependent manner, supports ATP synthesis, increases resistance to mitochondrial toxins, and modulates energy-sensing behavior. Moreover, transient mtON activation during hypoxic preconditioning prevents the well-characterized adaptive response of hypoxia resistance. Our results show that optogenetic manipulation of the PMF is a powerful tool to modulate metabolism and cell signaling.
线粒体呼吸产生跨线粒体内膜的电化学质子梯度,称为质子动力势(PMF),以驱动多种功能并合成 ATP。目前操纵 PMF 的技术仅限于其耗散;然而,没有精确和可逆的方法来增加 PMF。为了解决这个问题,我们旨在使用光遗传学方法,并设计了一种线粒体靶向的光激活质子泵,我们称之为线粒体开启(mtON),以选择性地增加秀丽隐杆线虫中的 PMF。在这里,我们表明 mtON 的光激活以剂量依赖的方式增加 PMF,支持 ATP 合成,增加对线粒体毒素的抵抗力,并调节能量感应行为。此外,在低氧预处理期间短暂的 mtON 激活可防止缺氧抗性的特征性适应性反应。我们的结果表明,PMF 的光遗传学操纵是调节代谢和细胞信号的有力工具。