Suppr超能文献

光遗传学控制线粒体质子动力对细胞应激抗性的影响。

Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance.

机构信息

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.

Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.

出版信息

EMBO Rep. 2020 Apr 3;21(4):e49113. doi: 10.15252/embr.201949113. Epub 2020 Feb 11.

Abstract

Mitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans. Here we show that mtON photoactivation increases the PMF in a dose-dependent manner, supports ATP synthesis, increases resistance to mitochondrial toxins, and modulates energy-sensing behavior. Moreover, transient mtON activation during hypoxic preconditioning prevents the well-characterized adaptive response of hypoxia resistance. Our results show that optogenetic manipulation of the PMF is a powerful tool to modulate metabolism and cell signaling.

摘要

线粒体呼吸产生跨线粒体内膜的电化学质子梯度,称为质子动力势(PMF),以驱动多种功能并合成 ATP。目前操纵 PMF 的技术仅限于其耗散;然而,没有精确和可逆的方法来增加 PMF。为了解决这个问题,我们旨在使用光遗传学方法,并设计了一种线粒体靶向的光激活质子泵,我们称之为线粒体开启(mtON),以选择性地增加秀丽隐杆线虫中的 PMF。在这里,我们表明 mtON 的光激活以剂量依赖的方式增加 PMF,支持 ATP 合成,增加对线粒体毒素的抵抗力,并调节能量感应行为。此外,在低氧预处理期间短暂的 mtON 激活可防止缺氧抗性的特征性适应性反应。我们的结果表明,PMF 的光遗传学操纵是调节代谢和细胞信号的有力工具。

相似文献

1
Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance.
EMBO Rep. 2020 Apr 3;21(4):e49113. doi: 10.15252/embr.201949113. Epub 2020 Feb 11.
2
Neuronal AMPK coordinates mitochondrial energy sensing and hypoxia resistance in C. elegans.
FASEB J. 2020 Dec;34(12):16333-16347. doi: 10.1096/fj.202001150RR. Epub 2020 Oct 15.
3
Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.
J Mol Biol. 2018 Oct 19;430(21):3873-3891. doi: 10.1016/j.jmb.2018.03.025. Epub 2018 Apr 4.
4
Mitochondrial energy state controls AMPK-mediated foraging behavior in .
Sci Adv. 2024 Apr 19;10(16):eadm8815. doi: 10.1126/sciadv.adm8815. Epub 2024 Apr 17.
7
An energetics perspective on geroscience: mitochondrial protonmotive force and aging.
Geroscience. 2021 Aug;43(4):1591-1604. doi: 10.1007/s11357-021-00365-7. Epub 2021 Apr 17.
8
Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
Biochem J. 1991 Apr 1;275 ( Pt 1)(Pt 1):75-80. doi: 10.1042/bj2750075.
9
Optogenetic control of mitochondrial metabolism and Ca signaling by mitochondria-targeted opsins.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5167-E5176. doi: 10.1073/pnas.1703623114. Epub 2017 Jun 13.

引用本文的文献

1
Optogenetic engineering for precision cancer immunotherapy.
Trends Pharmacol Sci. 2025 Jun 10. doi: 10.1016/j.tips.2025.05.002.
2
Mitochondrial energy state controls AMPK-mediated foraging behavior in .
Sci Adv. 2024 Apr 19;10(16):eadm8815. doi: 10.1126/sciadv.adm8815. Epub 2024 Apr 17.
4
Using light to drive energy transduction in metazoan aging.
Trends Biochem Sci. 2023 Nov;48(11):920-922. doi: 10.1016/j.tibs.2023.08.010. Epub 2023 Sep 11.
6
Exploring Molecular Targets for Mitochondrial Therapies in Neurodegenerative Diseases.
Int J Mol Sci. 2023 Aug 6;24(15):12486. doi: 10.3390/ijms241512486.
8
Harnessing light energy to charge mitochondria and extend lifespan.
Nat Aging. 2023 Feb;3(2):151-152. doi: 10.1038/s43587-023-00364-7.
9
Preservation of mitochondrial membrane potential is necessary for lifespan extension from dietary restriction.
Geroscience. 2023 Jun;45(3):1573-1581. doi: 10.1007/s11357-023-00766-w. Epub 2023 Mar 6.
10
Optogenetic rejuvenation of mitochondrial membrane potential extends lifespan.
Nat Aging. 2023 Feb;3(2):157-161. doi: 10.1038/s43587-022-00340-7. Epub 2022 Dec 30.

本文引用的文献

1
Light-driven activation of mitochondrial proton-motive force improves motor behaviors in a model of Parkinson's disease.
Commun Biol. 2019 Nov 22;2:424. doi: 10.1038/s42003-019-0674-1. eCollection 2019.
2
Compromised Mitochondrial Protein Import Acts as a Signal for UPR.
Cell Rep. 2019 Aug 13;28(7):1659-1669.e5. doi: 10.1016/j.celrep.2019.07.049.
3
Precisely Control Mitochondria with Light to Manipulate Cell Fate Decision.
Biophys J. 2019 Aug 20;117(4):631-645. doi: 10.1016/j.bpj.2019.06.038. Epub 2019 Jul 26.
4
Cardioprotection by the mitochondrial unfolded protein response requires ATF5.
Am J Physiol Heart Circ Physiol. 2019 Aug 1;317(2):H472-H478. doi: 10.1152/ajpheart.00244.2019. Epub 2019 Jul 5.
5
Fndc-1 contributes to paternal mitochondria elimination in C. elegans.
Dev Biol. 2019 Oct 1;454(1):15-20. doi: 10.1016/j.ydbio.2019.06.016. Epub 2019 Jun 21.
6
Element-Mediated CRISPR Integration of Transgenes in .
G3 (Bethesda). 2019 Aug 8;9(8):2629-2635. doi: 10.1534/g3.119.400399.
8
Mitochondria as a therapeutic target for common pathologies.
Nat Rev Drug Discov. 2018 Dec;17(12):865-886. doi: 10.1038/nrd.2018.174. Epub 2018 Nov 5.
9
Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.
J Biol Chem. 2018 Nov 2;293(44):17208-17217. doi: 10.1074/jbc.RA118.002579. Epub 2018 Sep 19.
10
Power Grid Protection of the Muscle Mitochondrial Reticulum.
Cell Rep. 2018 May 29;23(9):2832. doi: 10.1016/j.celrep.2018.05.055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验