Suppr超能文献

一个用于分类细菌操纵子的系统管道揭示了生物膜机械装置的进化景观。

A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries.

机构信息

Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.

出版信息

PLoS Comput Biol. 2020 Apr 1;16(4):e1007721. doi: 10.1371/journal.pcbi.1007721. eCollection 2020 Apr.

Abstract

In bacteria functionally related genes comprising metabolic pathways and protein complexes are frequently encoded in operons and are widely conserved across phylogenetically diverse species. The evolution of these operon-encoded processes is affected by diverse mechanisms such as gene duplication, loss, rearrangement, and horizontal transfer. These mechanisms can result in functional diversification, increasing the potential evolution of novel biological pathways, and enabling pre-existing pathways to adapt to the requirements of particular environments. Despite the fundamental importance that these mechanisms play in bacterial environmental adaptation, a systematic approach for studying the evolution of operon organization is lacking. Herein, we present a novel method to study the evolution of operons based on phylogenetic clustering of operon-encoded protein families and genomic-proximity network visualizations of operon architectures. We applied this approach to study the evolution of the synthase dependent exopolysaccharide (EPS) biosynthetic systems: cellulose, acetylated cellulose, poly-β-1,6-N-acetyl-D-glucosamine (PNAG), Pel, and alginate. These polymers have important roles in biofilm formation, antibiotic tolerance, and as virulence factors in opportunistic pathogens. Our approach revealed the complex evolutionary landscape of EPS machineries, and enabled operons to be classified into evolutionarily distinct lineages. Cellulose operons show phyla-specific operon lineages resulting from gene loss, rearrangement, and the acquisition of accessory loci, and the occurrence of whole-operon duplications arising through horizonal gene transfer. Our evolution-based classification also distinguishes between PNAG production from Gram-negative and Gram-positive bacteria on the basis of structural and functional evolution of the acetylation modification domains shared by PgaB and IcaB loci, respectively. We also predict several pel-like operon lineages in Gram-positive bacteria and demonstrate in our companion paper (Whitfield et al PLoS Pathogens, in press) that Bacillus cereus produces a Pel-dependent biofilm that is regulated by cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP).

摘要

在功能相关的细菌基因中,代谢途径和蛋白质复合物通常编码在操纵子中,并且在系统发育上广泛存在于不同的物种中。这些操纵子编码的过程的进化受到多种机制的影响,如基因复制、丢失、重排和水平转移。这些机制可以导致功能多样化,增加新的生物途径的潜在进化,并使现有的途径适应特定环境的要求。尽管这些机制在细菌环境适应中具有重要意义,但缺乏研究操纵子组织进化的系统方法。在此,我们提出了一种基于操纵子编码蛋白家族的系统发育聚类和操纵子结构的基因组邻近网络可视化来研究操纵子进化的新方法。我们应用这种方法研究了依赖合成酶的胞外多糖 (EPS) 生物合成系统的进化:纤维素、乙酰化纤维素、聚-β-1,6-N-乙酰-D-葡萄糖胺 (PNAG)、Pel 和海藻酸盐。这些聚合物在生物膜形成、抗生素耐药性以及作为机会性病原体毒力因子方面发挥着重要作用。我们的方法揭示了 EPS 机械装置的复杂进化景观,并使操纵子能够分为进化上不同的谱系。纤维素操纵子显示出由于基因丢失、重排和获得辅助基因座而产生的特定于门的操纵子谱系,以及通过水平基因转移产生的全操纵子复制。我们基于进化的分类还根据 PgaB 和 IcaB 基因座共享的乙酰化修饰结构域的结构和功能进化,区分了革兰氏阴性和阳性细菌中 PNAG 的产生。我们还预测了革兰氏阳性细菌中几个 Pel 样操纵子谱系,并在我们的姊妹论文(Whitfield 等人,PLoS 病原体,即将出版)中证明了芽孢杆菌产生的依赖于 Pel 的生物膜是由环-3',5'-二核苷酸鸟苷单磷酸(c-di-GMP)调节的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d36/7112194/64d62fe79703/pcbi.1007721.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验