Suppr超能文献

多聚(ADP-核糖):生物分子凝聚物形成的动态触发因子。

Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation.

机构信息

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Trends Cell Biol. 2020 May;30(5):370-383. doi: 10.1016/j.tcb.2020.02.002. Epub 2020 Feb 20.

Abstract

Poly(ADP-ribose) (PAR) is a nucleic acid-like protein modification that can seed the formation of microscopically visible cellular compartments that lack enveloping membranes, recently termed biomolecular condensates. These PAR-mediated condensates are linked to cancer, viral infection, and neurodegeneration. Recent data have shown the therapeutic potential of modulating PAR conjugation (PARylation): PAR polymerase (PARP) inhibitors can modulate the formation and dynamics of these condensates as well as the trafficking of their components - many of which are key disease factors. However, the way in which PARylation facilitates these functions remains unclear, partly because of our lack of understanding of the fundamental parameters of intracellular PARylation, including the sites that are conjugated, PAR chain length and structure, and the physicochemical properties of the conjugates. This review first introduces the role of PARylation in regulating biomolecular condensates, followed by discussion of current knowledge gaps, potential solutions, and therapeutic applications.

摘要

多聚(ADP-核糖)(PAR)是一种类似核酸的蛋白质修饰物,可作为种子诱导形成缺乏包膜的微观可见细胞区室,最近被称为生物分子凝聚物。这些由 PAR 介导的凝聚物与癌症、病毒感染和神经退行性变有关。最近的数据表明,调节 PAR 连接(PARylation)具有治疗潜力:PAR 聚合酶(PARP)抑制剂可调节这些凝聚物的形成和动态以及它们成分的运输——其中许多是关键的疾病因素。然而,PARylation 促进这些功能的方式仍不清楚,部分原因是我们对细胞内 PARylation 的基本参数缺乏了解,包括连接的位点、PAR 链长和结构以及共轭物的物理化学性质。这篇综述首先介绍了 PARylation 在调节生物分子凝聚物中的作用,然后讨论了当前的知识空白、潜在的解决方案和治疗应用。

相似文献

1
Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation.
Trends Cell Biol. 2020 May;30(5):370-383. doi: 10.1016/j.tcb.2020.02.002. Epub 2020 Feb 20.
2
Regulation of Biomolecular Condensates by Poly(ADP-ribose).
Chem Rev. 2023 Jul 26;123(14):9065-9093. doi: 10.1021/acs.chemrev.2c00851. Epub 2023 Apr 28.
3
Poly(ADP-ribose): PARadigms and PARadoxes.
Mol Aspects Med. 2013 Dec;34(6):1046-65. doi: 10.1016/j.mam.2012.12.010. Epub 2013 Jan 2.
4
Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions.
Int J Mol Sci. 2022 Nov 15;23(22):14075. doi: 10.3390/ijms232214075.
6
A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates.
Nucleic Acids Res. 2022 Oct 28;50(19):10817-10838. doi: 10.1093/nar/gkac866.
7
Poly(ADP-ribose) signaling in cell death.
Mol Aspects Med. 2013 Dec;34(6):1153-67. doi: 10.1016/j.mam.2013.01.007. Epub 2013 Feb 15.
9
The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport.
Cell Signal. 2012 Jan;24(1):1-8. doi: 10.1016/j.cellsig.2011.07.019. Epub 2011 Aug 5.
10
Mammalian N1-adenosine PARylation is a reversible DNA modification.
Nat Commun. 2022 Oct 17;13(1):6138. doi: 10.1038/s41467-022-33731-w.

引用本文的文献

1
2
Transient Poly(ADP-Ribose) Triggers FUS Condensation Hysteresis via a Prion-Like Mechanism.
bioRxiv. 2025 Jul 5:2025.07.03.659157. doi: 10.1101/2025.07.03.659157.
3
TUG protein acts through a disordered region to organize the early secretory pathway.
Nat Commun. 2025 Jul 1;16(1):5518. doi: 10.1038/s41467-025-60691-8.
4
Liquid‒liquid phase separation and poly(ADP‒ribosyl)ation in the context of ultraviolet radiation-induced stress in mammalian cells.
Biophys Rev. 2025 Mar 11;17(2):499-510. doi: 10.1007/s12551-025-01294-x. eCollection 2025 Apr.
5
Adenosine diphosphate-ribosylation greatly affects proteins function: a focus on neurodegenerative diseases.
Front Aging Neurosci. 2025 Apr 30;17:1575204. doi: 10.3389/fnagi.2025.1575204. eCollection 2025.
6
Interferon-induced PARP14-mediated ADP-ribosylation in p62 bodies requires the ubiquitin-proteasome system.
EMBO J. 2025 May;44(10):2741-2773. doi: 10.1038/s44318-025-00421-4. Epub 2025 Apr 7.
7
Mesoscale molecular assembly is favored by the active, crowded cytoplasm.
PRX Life. 2024 Sep;2(3). doi: 10.1103/prxlife.2.033001. Epub 2024 Jul 10.
8
dELTA-MS: A Mass Spectrometry-Based Proteomics Approach for Identifying ADP-Ribosylation Sites and Forms.
J Proteome Res. 2025 Apr 4;24(4):1791-1803. doi: 10.1021/acs.jproteome.4c00890. Epub 2025 Mar 13.
10
PARPs and ADP-ribosylation-mediated biomolecular condensates: determinants, dynamics, and disease implications.
Trends Biochem Sci. 2025 Mar;50(3):224-241. doi: 10.1016/j.tibs.2024.12.013. Epub 2025 Feb 7.

本文引用的文献

1
Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences.
Genes Dev. 2019 Dec 1;33(23-24):1619-1634. doi: 10.1101/gad.331520.119. Epub 2019 Oct 8.
2
A Nucleolar PARtnership Expands PARP Roles in RNA Biology and the Clinical Potential of PARP Inhibitors.
Mol Cell. 2019 Sep 19;75(6):1089-1091. doi: 10.1016/j.molcel.2019.09.001.
3
Liquid-Liquid Phase Separation in Disease.
Annu Rev Genet. 2019 Dec 3;53:171-194. doi: 10.1146/annurev-genet-112618-043527. Epub 2019 Aug 20.
5
Activation of PARP-1 by snoRNAs Controls Ribosome Biogenesis and Cell Growth via the RNA Helicase DDX21.
Mol Cell. 2019 Sep 19;75(6):1270-1285.e14. doi: 10.1016/j.molcel.2019.06.020. Epub 2019 Jul 24.
6
mA enhances the phase separation potential of mRNA.
Nature. 2019 Jul;571(7765):424-428. doi: 10.1038/s41586-019-1374-1. Epub 2019 Jul 10.
7
PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA.
Cell Rep. 2019 May 7;27(6):1809-1821.e5. doi: 10.1016/j.celrep.2019.04.031.
9
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease.
Nat Rev Neurol. 2019 May;15(5):272-286. doi: 10.1038/s41582-019-0157-5.
10
Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation.
Nat Commun. 2019 Mar 12;10(1):1182. doi: 10.1038/s41467-019-08859-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验