Uribe Isabel R, Zahn Emily, Searfoss Richard, Kim Han-Byeol, Dasovich Morgan, Voorneveld Jim, Hunt Sabrina R, Onuoha Ugochi C, Valadez Catherine, Filippov Dmitri V, Na Chan Hyun, Garcia Benjamin A, Orsburn Benjamin C, Leung Anthony K L
Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
J Proteome Res. 2025 Apr 4;24(4):1791-1803. doi: 10.1021/acs.jproteome.4c00890. Epub 2025 Mar 13.
ADP-ribosylation, characterized by the addition of adenosine diphosphate ribose, can occur in both monomeric (MARylation) and polymeric (PARylation) forms. Little is known about the specific contributions of MARylation and PARylation to cellular processes due to a lack of tools for jointly investigating these individual forms. We present a novel mass spectrometry (MS)-based proteomics approach that preserves information about the native ADP-ribosylation form associated with the modification site within a single proteomics experiment. Our workflow enables the simplified, binary identification of ADP-ribosylation forms, avoiding some challenges typically presented by PARylated peptides during MS analysis. Our method uses the coronaviral enzyme NS2 to reverse our previous labeling approach, ELTA, which enzymatically labels the terminal ADP-ribose. NS2 deconjugates ELTA-labeled free or peptide-conjugated ADP-ribose monomers and polymers (thereby termed dELTA), leaving behind a signature phosphate. Our dELTA-MS workflow involves ELTA labeling, dELTA deconjugation, and further processing using poly(ADP-ribose) glycohydrolase (DrPARG), resulting in two distinct mass shifts for MARylation and PARylation sites. We demonstrate the feasibility of this workflow for proteomics analyses using proof-of-principle peptide standards. dELTA-MS thus creates possibilities to reveal the fundamental biology of ADP-ribosylation and explore its dysregulation, in terms of both sites and forms, associated with disease progression.
ADP核糖基化的特征是添加二磷酸腺苷核糖,它可以以单体形式(单聚ADP核糖基化,MARylation)和多聚形式(多聚ADP核糖基化,PARylation)出现。由于缺乏同时研究这些单独形式的工具,人们对单聚ADP核糖基化和多聚ADP核糖基化对细胞过程的具体贡献知之甚少。我们提出了一种基于质谱(MS)的新型蛋白质组学方法,该方法在单个蛋白质组学实验中保留了与修饰位点相关的天然ADP核糖基化形式的信息。我们的工作流程能够简化ADP核糖基化形式的二元识别,避免了PAR化肽在MS分析过程中通常出现的一些挑战。我们的方法使用冠状病毒酶NS2来逆转我们之前的标记方法ELTA,ELTA通过酶促作用标记末端ADP核糖。NS2使ELTA标记的游离或肽缀合的ADP核糖单体和聚合物去共轭(因此称为dELTA),留下一个标志性的磷酸盐。我们的dELTA-MS工作流程包括ELTA标记、dELTA去共轭以及使用聚(ADP-核糖)糖苷水解酶(DrPARG)进行进一步处理,从而使MARylation和PARylation位点产生两种不同的质量位移。我们使用原理验证肽标准证明了该工作流程用于蛋白质组学分析的可行性。因此,dELTA-MS为揭示ADP核糖基化的基础生物学以及探索其在与疾病进展相关的位点和形式方面的失调创造了可能性。