Suppr超能文献

纵向数据模型:一种广义估计方程方法。

Models for longitudinal data: a generalized estimating equation approach.

作者信息

Zeger S L, Liang K Y, Albert P S

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205.

出版信息

Biometrics. 1988 Dec;44(4):1049-60.

PMID:3233245
Abstract

This article discusses extensions of generalized linear models for the analysis of longitudinal data. Two approaches are considered: subject-specific (SS) models in which heterogeneity in regression parameters is explicitly modelled; and population-averaged (PA) models in which the aggregate response for the population is the focus. We use a generalized estimating equation approach to fit both classes of models for discrete and continuous outcomes. When the subject-specific parameters are assumed to follow a Gaussian distribution, simple relationships between the PA and SS parameters are available. The methods are illustrated with an analysis of data on mother's smoking and children's respiratory disease.

摘要

本文讨论了用于纵向数据分析的广义线性模型的扩展。考虑了两种方法:特定个体(SS)模型,其中回归参数的异质性被明确建模;以及总体平均(PA)模型,其中总体的总体反应是重点。我们使用广义估计方程方法来拟合这两类模型,用于离散和连续结果。当假设特定个体参数服从高斯分布时,PA和SS参数之间存在简单的关系。通过对母亲吸烟与儿童呼吸系统疾病数据的分析来说明这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验