Suppr超能文献

体细胞改变与免疫浸润的相互作用调节晚期透明细胞肾细胞癌对 PD-1 阻断的反应。

Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Nat Med. 2020 Jun;26(6):909-918. doi: 10.1038/s41591-020-0839-y. Epub 2020 May 29.

Abstract

PD-1 blockade has transformed the management of advanced clear cell renal cell carcinoma (ccRCC), but the drivers and resistors of the PD-1 response remain incompletely elucidated. Here, we analyzed 592 tumors from patients with advanced ccRCC enrolled in prospective clinical trials of treatment with PD-1 blockade by whole-exome and RNA sequencing, integrated with immunofluorescence analysis, to uncover the immunogenomic determinants of the therapeutic response. Although conventional genomic markers (such as tumor mutation burden and neoantigen load) and the degree of CD8 T cell infiltration were not associated with clinical response, we discovered numerous chromosomal alterations associated with response or resistance to PD-1 blockade. These advanced ccRCC tumors were highly CD8 T cell infiltrated, with only 27% having a non-infiltrated phenotype. Our analysis revealed that infiltrated tumors are depleted of favorable PBRM1 mutations and enriched for unfavorable chromosomal losses of 9p21.3, as compared with non-infiltrated tumors, demonstrating how the potential interplay of immunophenotypes with somatic alterations impacts therapeutic efficacy.

摘要

PD-1 阻断疗法已经改变了晚期透明细胞肾细胞癌(ccRCC)的治疗方式,但 PD-1 反应的驱动因素和抵抗因素仍不完全清楚。在这里,我们通过全外显子组和 RNA 测序分析了 592 例接受 PD-1 阻断治疗的晚期 ccRCC 患者的前瞻性临床试验中的肿瘤,并与免疫荧光分析相结合,以揭示治疗反应的免疫基因组决定因素。尽管传统的基因组标志物(如肿瘤突变负担和新抗原负荷)和 CD8 T 细胞浸润程度与临床反应无关,但我们发现了许多与 PD-1 阻断反应或耐药相关的染色体改变。这些晚期 ccRCC 肿瘤高度浸润 CD8 T 细胞,只有 27%的肿瘤表现为非浸润性表型。我们的分析表明,与非浸润性肿瘤相比,浸润性肿瘤中有利的 PBRM1 突变缺失,并且 9p21.3 染色体的不利缺失增加,这表明免疫表型与体细胞改变的潜在相互作用如何影响治疗效果。

相似文献

4
Genomic profiling in renal cell carcinoma.
Nat Rev Nephrol. 2020 Aug;16(8):435-451. doi: 10.1038/s41581-020-0301-x. Epub 2020 Jun 19.
5
Molecular genetics of clear-cell renal cell carcinoma.
J Clin Oncol. 2014 Jun 20;32(18):1968-76. doi: 10.1200/JCO.2012.45.2003. Epub 2014 May 12.
6
PBRM1 and BAP1 as novel targets for renal cell carcinoma.
Cancer J. 2013 Jul-Aug;19(4):324-32. doi: 10.1097/PPO.0b013e3182a102d1.
8
Specific genomic aberrations predict survival, but low mutation rate in cancer hot spots, in clear cell renal cell carcinoma.
Appl Immunohistochem Mol Morphol. 2015 May-Jun;23(5):334-42. doi: 10.1097/PAI.0000000000000087.
9
The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer.
Cancer Genet. 2015 May;208(5):206-14. doi: 10.1016/j.cancergen.2015.02.008. Epub 2015 Feb 20.
10
Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma.
Genes Chromosomes Cancer. 2014 Jan;53(1):38-51. doi: 10.1002/gcc.22116. Epub 2013 Oct 29.

引用本文的文献

3
Comprehensive Insights Into the Role of TRPM4 in Pan-Cancer Progression and Immune Regulation.
Immunotargets Ther. 2025 Aug 20;14:831-848. doi: 10.2147/ITT.S542176. eCollection 2025.
4
Comprehensive analysis of the leukocyte immunoglobulin-like receptor family in clear cell renal cell carcinoma.
Ann Med. 2025 Dec;57(1):2546684. doi: 10.1080/07853890.2025.2546684. Epub 2025 Aug 22.
5
Anoikis-related genes predicts prognosis and therapeutic response in renal cell carcinoma.
Ann Med. 2025 Dec;57(1):2548042. doi: 10.1080/07853890.2025.2548042. Epub 2025 Aug 19.
6
Automatic segmentation of clear cell renal cell carcinoma based on deep learning and a preliminary exploration of the tumor microenvironment.
Transl Androl Urol. 2025 Jul 30;14(7):2059-2074. doi: 10.21037/tau-2025-400. Epub 2025 Jul 25.
8
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.
Front Immunol. 2025 Jul 24;16:1557461. doi: 10.3389/fimmu.2025.1557461. eCollection 2025.
10
A Pan-Cancer Analysis of Natriuretic Peptide Receptor 3 (NPR3) with Clinical Cohort and in vitro Validation.
J Inflamm Res. 2025 Jul 26;18:9989-10013. doi: 10.2147/JIR.S515347. eCollection 2025.

本文引用的文献

1
Determining cell type abundance and expression from bulk tissues with digital cytometry.
Nat Biotechnol. 2019 Jul;37(7):773-782. doi: 10.1038/s41587-019-0114-2. Epub 2019 May 6.
2
Neoantigen-directed immune escape in lung cancer evolution.
Nature. 2019 Mar;567(7749):479-485. doi: 10.1038/s41586-019-1032-7. Epub 2019 Mar 20.
3
Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma.
N Engl J Med. 2019 Mar 21;380(12):1103-1115. doi: 10.1056/NEJMoa1816047. Epub 2019 Feb 16.
4
Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma.
N Engl J Med. 2019 Mar 21;380(12):1116-1127. doi: 10.1056/NEJMoa1816714. Epub 2019 Feb 16.
5
Genetic alteration of histone lysine methyltransferases and their significance in renal cell carcinoma.
PeerJ. 2019 Feb 6;7:e6396. doi: 10.7717/peerj.6396. eCollection 2019.
7
Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes.
Cell. 2018 Nov 15;175(5):1272-1288.e20. doi: 10.1016/j.cell.2018.09.032. Epub 2018 Oct 18.
8
Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma.
J Clin Invest. 2018 Nov 1;128(11):4804-4820. doi: 10.1172/JCI121476. Epub 2018 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验