Suppr超能文献

利用 NaChBac 在纳米盘上研究毒素对电压门控 Na 通道作用的 cryo-EM 分析。

Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na channels in nanodisc.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14187-14193. doi: 10.1073/pnas.1922903117. Epub 2020 Jun 8.

Abstract

NaChBac, the first bacterial voltage-gated Na (Na) channel to be characterized, has been the prokaryotic prototype for studying the structure-function relationship of Na channels. Discovered nearly two decades ago, the structure of NaChBac has not been determined. Here we present the single particle electron cryomicroscopy (cryo-EM) analysis of NaChBac in both detergent micelles and nanodiscs. Under both conditions, the conformation of NaChBac is nearly identical to that of the potentially inactivated NaAb. Determining the structure of NaChBac in nanodiscs enabled us to examine gating modifier toxins (GMTs) of Na channels in lipid bilayers. To study GMTs in mammalian Na channels, we generated a chimera in which the extracellular fragment of the S3 and S4 segments in the second voltage-sensing domain from Na1.7 replaced the corresponding sequence in NaChBac. Cryo-EM structures of the nanodisc-embedded chimera alone and in complex with HuwenToxin IV (HWTX-IV) were determined to 3.5 and 3.2 Å resolutions, respectively. Compared to the structure of HWTX-IV-bound human Na1.7, which was obtained at an overall resolution of 3.2 Å, the local resolution of the toxin has been improved from ∼6 to ∼4 Å. This resolution enabled visualization of toxin docking. NaChBac can thus serve as a convenient surrogate for structural studies of the interactions between GMTs and Na channels in a membrane environment.

摘要

NaChBac 是第一个被鉴定的细菌电压门控 Na(Na)通道,一直是研究 Na 通道结构功能关系的原核原型。该通道于近二十年前被发现,但其结构尚未被确定。在这里,我们展示了 NaChBac 在去污剂胶束和纳米盘两种条件下的单颗粒电子冷冻电镜(cryo-EM)分析结果。在这两种条件下,NaChBac 的构象与潜在失活的 NaAb 非常相似。在纳米盘中确定 NaChBac 的结构,使我们能够在脂质双层中研究 Na 通道的门控修饰毒素(GMTs)。为了在哺乳动物 Na 通道中研究 GMTs,我们构建了一个嵌合体,其中第二个电压感应域 S3 和 S4 段的细胞外片段来自 Na1.7,取代了 NaChBac 中的相应序列。纳米盘嵌入嵌合体的单独和与 HuwenToxin IV(HWTX-IV)复合物的 cryo-EM 结构分别解析至 3.5 和 3.2 Å 的分辨率。与在整体分辨率为 3.2 Å 的情况下获得的与 HWTX-IV 结合的人源 Na1.7 的结构相比,毒素的局部分辨率从约 6 Å 提高到约 4 Å。该分辨率能够可视化毒素对接。因此,NaChBac 可以作为在膜环境中研究 GMTs 与 Na 通道相互作用的结构研究的便利替代物。

相似文献

1
Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na channels in nanodisc.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14187-14193. doi: 10.1073/pnas.1922903117. Epub 2020 Jun 8.
2
Molecular mechanism of the spider toxin κ-LhTx-I acting on the bacterial voltage-gated sodium channel NaChBac.
Front Pharmacol. 2022 Aug 4;13:924661. doi: 10.3389/fphar.2022.924661. eCollection 2022.
5
Structural Pharmacology of Voltage-Gated Sodium Channels.
J Mol Biol. 2021 Aug 20;433(17):166967. doi: 10.1016/j.jmb.2021.166967. Epub 2021 Mar 29.
6
Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
Methods Enzymol. 2017;594:1-30. doi: 10.1016/bs.mie.2017.05.007. Epub 2017 Jul 19.
7
Cross-kingdom auxiliary subunit modulation of a voltage-gated sodium channel.
J Biol Chem. 2018 Apr 6;293(14):4981-4992. doi: 10.1074/jbc.RA117.000852. Epub 2018 Jan 25.
8
Isoflurane modulates activation and inactivation gating of the prokaryotic Na channel NaChBac.
J Gen Physiol. 2017 Jun 5;149(6):623-638. doi: 10.1085/jgp.201611600. Epub 2017 Apr 17.
9
Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes.
J Biol Chem. 2018 Jun 8;293(23):9041-9052. doi: 10.1074/jbc.RA118.002553. Epub 2018 Apr 27.
10
A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.
Neurosci Lett. 2018 Jul 13;679:35-47. doi: 10.1016/j.neulet.2018.04.030. Epub 2018 Apr 21.

引用本文的文献

2
3
Structural basis of inhibition of human Na1.8 by the tarantula venom peptide Protoxin-I.
Nat Commun. 2025 Feb 7;16(1):1459. doi: 10.1038/s41467-024-55764-z.
5
Structural basis of inhibition of human Na1.8 by the tarantula venom peptide Protoxin-I.
bioRxiv. 2024 Aug 28:2024.08.27.609828. doi: 10.1101/2024.08.27.609828.
6
The chemistry of electrical signaling in sodium channels from bacteria and beyond.
Cell Chem Biol. 2024 Aug 15;31(8):1405-1421. doi: 10.1016/j.chembiol.2024.07.010.
7
Structural biology and molecular pharmacology of voltage-gated ion channels.
Nat Rev Mol Cell Biol. 2024 Nov;25(11):904-925. doi: 10.1038/s41580-024-00763-7. Epub 2024 Aug 5.
8
Conotoxins Targeting Voltage-Gated Sodium Ion Channels.
Pharmacol Rev. 2024 Aug 15;76(5):828-845. doi: 10.1124/pharmrev.123.000923.
9
Structural basis for urate recognition and apigenin inhibition of human GLUT9.
Nat Commun. 2024 Jun 12;15(1):5039. doi: 10.1038/s41467-024-49420-9.
10
A structural atlas of druggable sites on Na channels.
Channels (Austin). 2024 Dec;18(1):2287832. doi: 10.1080/19336950.2023.2287832. Epub 2023 Nov 30.

本文引用的文献

1
Cryo-EM structures of apo and antagonist-bound human Ca3.1.
Nature. 2019 Dec;576(7787):492-497. doi: 10.1038/s41586-019-1801-3. Epub 2019 Nov 25.
2
Development of Photocrosslinking Probes Based on Huwentoxin-IV to Map the Site of Interaction on Nav1.7.
Cell Chem Biol. 2020 Mar 19;27(3):306-313.e4. doi: 10.1016/j.chembiol.2019.10.011. Epub 2019 Nov 12.
3
Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca Channel.
Cell. 2019 May 30;177(6):1495-1506.e12. doi: 10.1016/j.cell.2019.04.043.
4
Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.
Cell. 2019 Feb 21;176(5):1238-1239. doi: 10.1016/j.cell.2019.01.047.
5
Structures of human Na1.7 channel in complex with auxiliary subunits and animal toxins.
Science. 2019 Mar 22;363(6433):1303-1308. doi: 10.1126/science.aaw2493. Epub 2019 Feb 14.
6
Molecular basis for pore blockade of human Na channel Na1.2 by the μ-conotoxin KIIIA.
Science. 2019 Mar 22;363(6433):1309-1313. doi: 10.1126/science.aaw2999. Epub 2019 Feb 14.
8
Structure of the human voltage-gated sodium channel Na1.4 in complex with β1.
Science. 2018 Oct 19;362(6412). doi: 10.1126/science.aau2486. Epub 2018 Sep 6.
9
SWISS-MODEL: homology modelling of protein structures and complexes.
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. doi: 10.1093/nar/gky427.
10
Structure of the Na1.4-β1 Complex from Electric Eel.
Cell. 2017 Jul 27;170(3):470-482.e11. doi: 10.1016/j.cell.2017.06.039. Epub 2017 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验