Suppr超能文献

谱系返祖驱动肠道癌症中的 WNT 独立性。

Lineage Reversion Drives WNT Independence in Intestinal Cancer.

机构信息

Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.

Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.

出版信息

Cancer Discov. 2020 Oct;10(10):1590-1609. doi: 10.1158/2159-8290.CD-19-1536. Epub 2020 Jun 16.

Abstract

The WNT pathway is a fundamental regulator of intestinal homeostasis, and hyperactivation of WNT signaling is the major oncogenic driver in colorectal cancer. To date, there are no described mechanisms that bypass WNT dependence in intestinal tumors. Here, we show that although WNT suppression blocks tumor growth in most organoid and colorectal cancer models, the accumulation of colorectal cancer-associated genetic alterations enables drug resistance and WNT-independent growth. In intestinal epithelial cells harboring mutations in or , together with disruption of and , transient TGFβ exposure drives YAP/TAZ-dependent transcriptional reprogramming and lineage reversion. Acquisition of embryonic intestinal identity is accompanied by a permanent loss of adult intestinal lineages, and long-term WNT-independent growth. This work identifies genetic and microenvironmental factors that drive WNT inhibitor resistance, defines a new mechanism for WNT-independent colorectal cancer growth, and reveals how integration of associated genetic alterations and extracellular signals can overcome lineage-dependent oncogenic programs. SIGNIFICANCE: Colorectal and intestinal cancers are driven by mutations in the WNT pathway, and drugs aimed at suppressing WNT signaling are in active clinical development. Our study identifies a mechanism of acquired resistance to WNT inhibition and highlights a potential strategy to target those drug-resistant cells..

摘要

WNT 通路是肠道稳态的基本调节因子,WNT 信号的过度激活是结直肠癌的主要致癌驱动因素。迄今为止,尚无描述的机制可以绕过肠道肿瘤中对 WNT 的依赖。在这里,我们表明,尽管 WNT 抑制在大多数类器官和结直肠癌细胞模型中阻断肿瘤生长,但结直肠癌相关遗传改变的积累使药物产生耐药性并实现 WNT 非依赖性生长。在携带 或 突变的肠上皮细胞中,加上 和 的破坏,短暂的 TGFβ 暴露会驱动 YAP/TAZ 依赖性转录重编程和谱系反转。获得胚胎肠特性伴随着成人肠谱系的永久丧失和长期的 WNT 非依赖性生长。这项工作确定了驱动 WNT 抑制剂耐药性的遗传和微环境因素,定义了 WNT 非依赖性结直肠癌生长的新机制,并揭示了相关遗传改变和细胞外信号如何整合以克服谱系依赖性致癌程序。意义:结直肠癌和肠道癌是由 WNT 通路中的突变驱动的,旨在抑制 WNT 信号的药物正在积极进行临床开发。我们的研究确定了对 WNT 抑制获得性耐药的机制,并强调了针对这些耐药细胞的潜在策略。

相似文献

1
Lineage Reversion Drives WNT Independence in Intestinal Cancer.
Cancer Discov. 2020 Oct;10(10):1590-1609. doi: 10.1158/2159-8290.CD-19-1536. Epub 2020 Jun 16.
2
TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway.
Gastroenterology. 2009 May;136(5):1680-8.e7. doi: 10.1053/j.gastro.2009.01.066. Epub 2009 Feb 4.
3
Tankyrase Inhibition Blocks Wnt/β-Catenin Pathway and Reverts Resistance to PI3K and AKT Inhibitors in the Treatment of Colorectal Cancer.
Clin Cancer Res. 2016 Feb 1;22(3):644-56. doi: 10.1158/1078-0432.CCR-14-3081. Epub 2015 Jul 29.
4
Combined Mutation of , and Effectively Drives Metastasis of Intestinal Cancer.
Cancer Res. 2018 Mar 1;78(5):1334-1346. doi: 10.1158/0008-5472.CAN-17-3303. Epub 2017 Dec 27.
5
Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy.
Cancer Discov. 2020 Nov;10(11):1690-1705. doi: 10.1158/2159-8290.CD-19-1472. Epub 2020 Jul 23.
6
CRISPR screens identify a novel combination treatment targeting BCL-X and WNT signaling for KRAS/BRAF-mutated colorectal cancers.
Oncogene. 2021 May;40(18):3287-3302. doi: 10.1038/s41388-021-01777-7. Epub 2021 Apr 12.
7
Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer.
Oncogene. 2015 Sep 17;34(38):4914-27. doi: 10.1038/onc.2014.416. Epub 2014 Dec 15.
8
WNT as a Driver and Dependency in Cancer.
Cancer Discov. 2021 Oct;11(10):2413-2429. doi: 10.1158/2159-8290.CD-21-0190. Epub 2021 Sep 13.
9
APC loss-induced intestinal tumorigenesis in Drosophila: Roles of Ras in Wnt signaling activation and tumor progression.
Dev Biol. 2013 Jun 15;378(2):122-40. doi: 10.1016/j.ydbio.2013.03.020. Epub 2013 Apr 6.
10
Wnt and Src signals converge on YAP-TEAD to drive intestinal regeneration.
EMBO J. 2021 Jul 1;40(13):e105770. doi: 10.15252/embj.2020105770. Epub 2021 May 5.

引用本文的文献

1
Colorectal cancer heterogeneity co-evolves with tumor architecture to determine disease outcome.
bioRxiv. 2025 Aug 13:2025.08.11.669722. doi: 10.1101/2025.08.11.669722.
2
Concurrent genetic and non-genetic resistance mechanisms to KRAS inhibition in CRC.
bioRxiv. 2025 Aug 5:2025.08.05.668666. doi: 10.1101/2025.08.05.668666.
4
Hippo/YAP signaling pathway in colorectal cancer: regulatory mechanisms and potential drug exploration.
Front Oncol. 2025 Jun 19;15:1545952. doi: 10.3389/fonc.2025.1545952. eCollection 2025.
5
Targeting the Hippo pathway in cancer.
Nat Rev Drug Discov. 2025 Jun 30. doi: 10.1038/s41573-025-01234-0.
7
3D tumor cultures for drug resistance and screening development in clinical applications.
Mol Cancer. 2025 Mar 21;24(1):93. doi: 10.1186/s12943-025-02281-2.
9
Current trends in sensitizing immune checkpoint inhibitors for cancer treatment.
Mol Cancer. 2024 Dec 26;23(1):279. doi: 10.1186/s12943-024-02179-5.

本文引用的文献

1
L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer.
Nat Cancer. 2020 Jan;1(1):28-45. doi: 10.1038/s43018-019-0006-x. Epub 2020 Jan 13.
2
Chromosome Engineering of Human Colon-Derived Organoids to Develop a Model of Traditional Serrated Adenoma.
Gastroenterology. 2020 Feb;158(3):638-651.e8. doi: 10.1053/j.gastro.2019.10.009. Epub 2019 Oct 14.
5
Distinct Colorectal Cancer-Associated APC Mutations Dictate Response to Tankyrase Inhibition.
Cancer Discov. 2019 Oct;9(10):1358-1371. doi: 10.1158/2159-8290.CD-19-0289. Epub 2019 Jul 23.
6
Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation.
Nat Genet. 2019 Jun;51(6):999-1010. doi: 10.1038/s41588-019-0408-9. Epub 2019 May 20.
7
A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1.
Cancer Discov. 2019 Jul;9(7):962-979. doi: 10.1158/2159-8290.CD-18-1391. Epub 2019 May 8.
8
Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell.
Nature. 2019 May;569(7754):121-125. doi: 10.1038/s41586-019-1154-y. Epub 2019 Apr 24.
9
Transforming Growth Factor-β Signaling in Immunity and Cancer.
Immunity. 2019 Apr 16;50(4):924-940. doi: 10.1016/j.immuni.2019.03.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验