Suppr超能文献

靶向代谢以改善肿瘤微环境用于癌症免疫治疗。

Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Mol Cell. 2020 Jun 18;78(6):1019-1033. doi: 10.1016/j.molcel.2020.05.034.

Abstract

The growing field of immune metabolism has revealed promising indications for metabolic targets to modulate anti-cancer immunity. Combination therapies involving metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy, radiation, and/or diet now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment (TME). Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. These changes also reveal opportunities to reshape the TME by targeting metabolic pathways to favor immunity. Here we explore current strategies that shift immune cell metabolism to pro-inflammatory states in the TME and highlight a need to better replicate physiologic conditions to select targets, clarify mechanisms, and optimize metabolic inhibitors. Unifying our understanding of these pathways and interactions within the heterogenous TME will be instrumental to advance this promising field and enhance immunotherapy.

摘要

免疫代谢领域的发展揭示了代谢靶点在调节抗肿瘤免疫方面的广阔前景。代谢抑制剂与免疫检查点抑制剂(ICB)、化疗、放疗和/或饮食相结合的联合疗法为癌症治疗提供了新的方法。然而,在复杂的肿瘤微环境(TME)背景下,如何最好地利用这些策略仍然不确定。肿瘤细胞代谢的致癌驱动变化会影响 TME,限制免疫反应,并对癌症治疗构成障碍。这些变化也为通过靶向代谢途径来促进免疫提供了重塑 TME 的机会。在这里,我们探讨了当前在 TME 中改变免疫细胞代谢以促进炎症状态的策略,并强调需要更好地复制生理条件来选择靶点、阐明机制和优化代谢抑制剂。统一我们对异质性 TME 中这些途径和相互作用的理解,对于推进这一有前途的领域和增强免疫疗法至关重要。

相似文献

1
Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.
Mol Cell. 2020 Jun 18;78(6):1019-1033. doi: 10.1016/j.molcel.2020.05.034.
3
Reshaping immunometabolism in the tumour microenvironment to improve cancer immunotherapy.
Biomed Pharmacother. 2023 Aug;164:114963. doi: 10.1016/j.biopha.2023.114963. Epub 2023 Jun 2.
5
The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
Front Immunol. 2020 May 7;11:784. doi: 10.3389/fimmu.2020.00784. eCollection 2020.
6
Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy.
Cancer Lett. 2023 Oct 28;575:216396. doi: 10.1016/j.canlet.2023.216396. Epub 2023 Sep 20.
8
Moving Immune Therapy Forward Targeting TME.
Physiol Rev. 2021 Apr 1;101(2):417-425. doi: 10.1152/physrev.00008.2020. Epub 2020 Aug 13.
9
Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
Front Immunol. 2018 Feb 26;9:341. doi: 10.3389/fimmu.2018.00341. eCollection 2018.
10
Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy.
Cell Rep. 2020 Jul 7;32(1):107848. doi: 10.1016/j.celrep.2020.107848.

引用本文的文献

1
Immunotherapy Resistance and Therapeutic Strategies in PD-L1 High Expression Non-Small Cell Lung Cancer.
Onco Targets Ther. 2025 Aug 29;18:953-966. doi: 10.2147/OTT.S539978. eCollection 2025.
2
Recent Advancement in MRI-Based Nanotheranostic Agents for Tumor Diagnosis and Therapy Integration.
Int J Nanomedicine. 2025 Aug 29;20:10503-10540. doi: 10.2147/IJN.S529003. eCollection 2025.
4
Novel Aza-podophyllotoxin Derivative Inhibits Growth of Triple-Negative Breast Cancer.
ACS Omega. 2025 Jul 3;10(33):37004-37012. doi: 10.1021/acsomega.5c00052. eCollection 2025 Aug 26.
5
Colorectal Cancers and Immunotherapy.
Cancer Treat Res. 2025;129:83-102. doi: 10.1007/978-3-031-97242-3_5.
6
New Insights into Monocyte-Derived Macrophages in Glioblastoma.
Research (Wash D C). 2025 Aug 12;8:0836. doi: 10.34133/research.0836. eCollection 2025.
8
Hepatic Metabolic Signature and Its Association with the Response to Immunotherapy in Hepatocellular Carcinoma.
Immunotargets Ther. 2025 Jul 23;14:787-798. doi: 10.2147/ITT.S491464. eCollection 2025.
10
Leveraging immunologically based therapies to treat diffuse large B-cell lymphoma.
Trends Cancer. 2025 Jul 23. doi: 10.1016/j.trecan.2025.06.013.

本文引用的文献

2
Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal.
Nat Immunol. 2020 May;21(5):555-566. doi: 10.1038/s41590-020-0666-9. Epub 2020 Apr 23.
4
Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis.
Sci Transl Med. 2020 Apr 8;12(538). doi: 10.1126/scitranslmed.aay1620.
6
Glutaminase-1 (GLS1) inhibition limits metastatic progression in osteosarcoma.
Cancer Metab. 2020 Mar 5;8:4. doi: 10.1186/s40170-020-0209-8. eCollection 2020.
7
CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors.
Nat Immunol. 2020 Mar;21(3):298-308. doi: 10.1038/s41590-019-0589-5. Epub 2020 Feb 17.
8
Targeted deletion of PD-1 in myeloid cells induces antitumor immunity.
Sci Immunol. 2020 Jan 3;5(43). doi: 10.1126/sciimmunol.aay1863.
9
Human Plasma-like Medium Improves T Lymphocyte Activation.
iScience. 2020 Jan 24;23(1):100759. doi: 10.1016/j.isci.2019.100759. Epub 2019 Dec 11.
10
Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function.
Cell Metab. 2020 Feb 4;31(2):422-437.e5. doi: 10.1016/j.cmet.2019.11.021. Epub 2019 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验