Suppr超能文献

口腔面裂的细胞与发育基础。

Cellular and developmental basis of orofacial clefts.

机构信息

Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.

Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.

出版信息

Birth Defects Res. 2020 Nov;112(19):1558-1587. doi: 10.1002/bdr2.1768. Epub 2020 Jul 29.

Abstract

During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.

摘要

在颅面发育过程中,上唇和/或腭裂的生长和融合缺陷会导致口腔裂隙(OFC),这是人类最常见的结构出生缺陷之一。OFC 的发育基础包括上唇、初级腭、次级腭和其他口腔结构的形态发生,每个结构都由源自三个胚层的不同细胞类型组成:外胚层、中胚层和内胚层。颅神经嵴细胞和口腔上皮细胞是两种主要的细胞类型,它们与各种细胞谱系相互作用,在口腔发育中发挥关键作用。OFC 的细胞基础涉及以下任何一个或多个过程中的执行缺陷:神经嵴诱导、上皮-间充质转化、迁移、增殖、分化、凋亡、初级纤毛形成及其信号转导、上皮缝形成和消失、表皮形成和脱落、腭上皮缝细胞的汇聚和挤压、细胞黏附、细胞骨架动力学和细胞外基质功能。最新的细胞和发育发现可能为更好地理解 OFC 的遗传、表观遗传、环境和分子机制提供基础。

相似文献

1
Cellular and developmental basis of orofacial clefts.
Birth Defects Res. 2020 Nov;112(19):1558-1587. doi: 10.1002/bdr2.1768. Epub 2020 Jul 29.
3
Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2317668121. doi: 10.1073/pnas.2317668121. Epub 2024 Jan 9.
4
Patched1 is required in neural crest cells for the prevention of orofacial clefts.
Hum Mol Genet. 2013 Dec 15;22(24):5026-35. doi: 10.1093/hmg/ddt353. Epub 2013 Jul 29.
5
MicroRNAs as epigenetic regulators of orofacial development.
Differentiation. 2022 Mar-Apr;124:1-16. doi: 10.1016/j.diff.2022.01.002. Epub 2022 Jan 17.
6
Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
J Dent Res. 2017 Oct;96(11):1210-1220. doi: 10.1177/0022034517726284. Epub 2017 Aug 17.
7
Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish.
Birth Defects Res A Clin Mol Teratol. 2016 Oct;106(10):814-830. doi: 10.1002/bdra.23546. Epub 2016 Aug 4.
8
Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
J Anat. 2018 Aug;233(2):222-242. doi: 10.1111/joa.12821. Epub 2018 May 23.
9
Genetics and signaling mechanisms of orofacial clefts.
Birth Defects Res. 2020 Nov;112(19):1588-1634. doi: 10.1002/bdr2.1754. Epub 2020 Jul 15.

引用本文的文献

1
Newly Identified Developmental Delays in a Large Population of Children With Nonsyndromic Cleft Lip and Palate.
Plast Reconstr Surg Glob Open. 2025 Apr 2;13(4):e6655. doi: 10.1097/GOX.0000000000006655. eCollection 2025 Apr.
2
Maternal and Parent-of-Origin Gene-Environment Effects on the Etiology of Orofacial Clefting.
Genes (Basel). 2025 Feb 4;16(2):195. doi: 10.3390/genes16020195.
3
Nutrition and diet in children with orofacial clefts in Africa: a scoping review.
BMC Oral Health. 2024 Nov 5;24(1):1341. doi: 10.1186/s12903-024-05130-8.
6
Immunohistochemical Evaluation of BARX1, DLX4, FOXE1, HOXB3, and MSX2 in Nonsyndromic Cleft Affected Tissue.
Acta Med Litu. 2022;29(2):271-294. doi: 10.15388/Amed.2022.29.2.13. Epub 2022 Jun 29.
7
Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis.
Nat Commun. 2023 Sep 14;14(1):5687. doi: 10.1038/s41467-023-41349-9.
8
Disruption of causes craniofacial anomalies in developing zebrafish.
Front Cell Dev Biol. 2023 Aug 16;11:1141893. doi: 10.3389/fcell.2023.1141893. eCollection 2023.
9
Orofacial Clefts: Genetics of Cleft Lip and Palate.
Genes (Basel). 2023 Aug 9;14(8):1603. doi: 10.3390/genes14081603.
10
RA-induced prominence-specific response resulted in distinctive regulation of Wnt and osteogenesis.
Life Sci Alliance. 2023 Aug 4;6(10). doi: 10.26508/lsa.202302013. Print 2023 Oct.

本文引用的文献

1
Single Cell Sequencing Analysis of Lizard Phagocytic Cell Populations and Their Role in Tail Regeneration.
J Immunol Regen Med. 2020 Jun;8. doi: 10.1016/j.regen.2020.100029. Epub 2020 Feb 19.
2
Cellular Heterogeneity and Lineage Restriction during Mouse Digit Tip Regeneration at Single-Cell Resolution.
Dev Cell. 2020 Feb 24;52(4):525-540.e5. doi: 10.1016/j.devcel.2020.01.026.
4
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis.
Cells. 2019 Sep 29;8(10):1173. doi: 10.3390/cells8101173.
5
Extracellular Matrix in Secondary Palate Development.
Anat Rec (Hoboken). 2020 Jun;303(6):1543-1556. doi: 10.1002/ar.24263. Epub 2019 Oct 30.
6
Medial epithelial seam cell migration during palatal fusion.
J Cell Physiol. 2020 Feb;235(2):1417-1424. doi: 10.1002/jcp.29061. Epub 2019 Jul 2.
7
Observation of Dynamic Cellular Migration of the Medial Edge Epithelium of the Palatal Shelf .
Front Physiol. 2019 Jun 6;10:698. doi: 10.3389/fphys.2019.00698. eCollection 2019.
8
YAP promotes neural crest emigration through interactions with BMP and Wnt activities.
Cell Commun Signal. 2019 Jun 22;17(1):69. doi: 10.1186/s12964-019-0383-x.
9
The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution.
Development. 2019 Jun 17;146(12):dev174888. doi: 10.1242/dev.174888.
10
Identification of a regeneration-organizing cell in the tail.
Science. 2019 May 17;364(6441):653-658. doi: 10.1126/science.aav9996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验