Suppr超能文献

真菌生物膜结构产生低氧微环境,从而导致抗真菌耐药性。

Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance.

机构信息

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22473-22483. doi: 10.1073/pnas.2003700117. Epub 2020 Aug 26.

Abstract

Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogen forms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity within biofilms. Oxygen gradients inevitably arise during biofilm maturation and are both critical for, and the result of, late-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base of biofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.

摘要

尽管体外真菌分离物药物敏感性良好,但人类真菌感染在体内可能无法对当代抗真菌疗法产生反应。这种体外抗微生物敏感性与体内治疗结果之间的差异部分可以通过微生物在感染过程中采用抗药性生物膜生长模式来解释。丝状真菌病原体 在体内形成生物膜,在生物膜生长过程中,它对所有三类当代抗真菌药物的敏感性降低。驱动丝状真菌生物膜抗真菌药物耐药性的具体特征在很大程度上仍不清楚。在这项研究中,我们应用荧光显微镜方法结合转录生物报告基因来定义 生物膜内的空间和时间氧梯度和单细胞代谢活性。氧梯度不可避免地在 生物膜成熟过程中出现,并且对于晚期生物膜结构既是关键因素,也是其结果。我们观察到,这些自我诱导的缺氧微环境不仅有助于丝状真菌生物膜的成熟,而且还导致对抗真菌治疗的耐药性。生物膜底部的氧气水平降低会增加抗真菌药物的耐药性。我们的研究结果定义了丝状真菌生物膜生理学和当代抗真菌药物耐药性之间以前未知的机制联系。此外,我们证明了在许多细菌生物膜中发现的动态氧梯度介导的耐药性也扩展到真菌界。因此,细菌和真菌生物膜中缺氧耐药小生境的保守性是提高抗菌治疗效果的一个有希望的目标。

相似文献

1
Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22473-22483. doi: 10.1073/pnas.2003700117. Epub 2020 Aug 26.
3
4
Unsaturated fatty acid perturbation combats emerging triazole antifungal resistance in the human fungal pathogen .
mBio. 2024 Jul 17;15(7):e0116624. doi: 10.1128/mbio.01166-24. Epub 2024 Jun 27.
5
Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells.
Antimicrob Agents Chemother. 2008 Nov;52(11):4130-6. doi: 10.1128/AAC.00234-08. Epub 2008 Aug 18.
8
Effects of Itraconazole and Micafungin on Aspergillus fumigatus Biofilms.
Mycopathologia. 2021 Jun;186(3):387-397. doi: 10.1007/s11046-021-00534-4. Epub 2021 May 6.
9
Hsp90 governs dispersion and drug resistance of fungal biofilms.
PLoS Pathog. 2011 Sep;7(9):e1002257. doi: 10.1371/journal.ppat.1002257. Epub 2011 Sep 8.

引用本文的文献

1
During nitrogen-limited biofilm formation, mitophagy is independent of mitochondrial fission.
Autophagy Rep. 2025 Aug 22;4(1):2547194. doi: 10.1080/27694127.2025.2547194. eCollection 2025.
2
Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5614. Epub 2025 Aug 24.
5
The hypoxic microenvironment of biofilms shapes neutrophil responses.
Front Immunol. 2025 Apr 22;16:1547559. doi: 10.3389/fimmu.2025.1547559. eCollection 2025.
7
Aspergillus fumigatus biology, immunopathogenicity and drug resistance.
Nat Rev Microbiol. 2025 May 2. doi: 10.1038/s41579-025-01180-z.
8
Nanoparticle-based antifungal therapies innovations mechanisms and future prospects.
PeerJ. 2025 Apr 8;13:e19199. doi: 10.7717/peerj.19199. eCollection 2025.
10
The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on .
J Fungi (Basel). 2025 Mar 19;11(3):236. doi: 10.3390/jof11030236.

本文引用的文献

1
Drug resistance and tolerance in fungi.
Nat Rev Microbiol. 2020 Jun;18(6):319-331. doi: 10.1038/s41579-019-0322-2. Epub 2020 Feb 11.
2
Mitochondrial dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1711-1721. doi: 10.1073/pnas.1911560116. Epub 2019 Dec 6.
3
Fungal biofilm morphology impacts hypoxia fitness and disease progression.
Nat Microbiol. 2019 Dec;4(12):2430-2441. doi: 10.1038/s41564-019-0558-7. Epub 2019 Sep 23.
5
Biofilms Are Generally Devoid of Persister Cells.
Antimicrob Agents Chemother. 2019 Apr 25;63(5). doi: 10.1128/AAC.01979-18. Print 2019 May.
7
FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes.
J Fungi (Basel). 2018 Mar 20;4(1):39. doi: 10.3390/jof4010039.
10
Hyperbaric Oxygen Reduces Aspergillus fumigatus Proliferation and Influences Disease Outcomes.
Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.01953-17. Print 2018 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验