Suppr超能文献

二维纳米纤维膜转化为具有结构和组成梯度的三维分级组装体调节细胞行为。

Converting 2D Nanofiber Membranes to 3D Hierarchical Assemblies with Structural and Compositional Gradients Regulates Cell Behavior.

机构信息

Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.

出版信息

Adv Mater. 2020 Oct;32(43):e2003754. doi: 10.1002/adma.202003754. Epub 2020 Sep 18.

Abstract

New methods are described for converting 2D electrospun nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients. Pore-size gradients are generated by tuning the expansion of 2D membranes in different layers with incorporation of various amounts of a surfactant during the gas-foaming process. The gradient in fiber organizations is formed by expanding 2D nanofiber membranes composed of multiple regions collected by varying rotating speeds of mandrel. A compositional gradient on 3D assemblies consisting of radially aligned nanofibers is prepared by dripping, diffusion, and crosslinking. Bone mesenchymal stem cells (BMSCs) on the 3D nanofiber assemblies with smaller pore size show significantly higher expression of hypoxia-related markers and enhanced chondrogenic differentiation compared to BMSCs cultured on the assemblies with larger pore size. The basic fibroblast growth factor gradient can accelerate fibroblast migration from the surrounding area to the center in an in vitro wound healing model. Taken together, 3D nanofiber assemblies with gradients in pore sizes, fiber organizations, and contents of signaling molecules can be used to engineer tissue constructs for tissue repair and build biomimetic disease models for studying disease biology and screening drugs, in particular, for interface tissue engineering and modeling.

摘要

介绍了将二维电纺纳米纤维膜转化为具有结构和组成梯度的三维分级组装体的新方法。通过在气发泡过程中加入不同量的表面活性剂来调节各层二维膜的膨胀,可以产生孔径梯度。通过改变芯轴的旋转速度来收集多个区域的二维纳米纤维膜的膨胀,可以形成纤维组织的梯度。由径向排列的纳米纤维组成的三维组装体上的组成梯度是通过滴注、扩散和交联来制备的。与在大孔径组装体上培养的骨髓间充质干细胞(BMSCs)相比,在小孔径三维纳米纤维组装体上培养的 BMSCs 表现出更高的缺氧相关标志物表达和增强的软骨分化。碱性成纤维细胞生长因子梯度可以在体外伤口愈合模型中加速成纤维细胞从周围区域向中心的迁移。总之,具有孔径、纤维组织和信号分子含量梯度的 3D 纳米纤维组装体可用于工程组织构建体以进行组织修复,并构建仿生疾病模型以研究疾病生物学和筛选药物,特别是用于界面组织工程和建模。

相似文献

3
Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro.
Tissue Eng Part A. 2014 Jan;20(1-2):398-409. doi: 10.1089/ten.TEA.2012.0426. Epub 2013 Oct 12.
5
Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering.
Adv Biosyst. 2019 Dec;3(12):e1900137. doi: 10.1002/adbi.201900137. Epub 2019 Nov 4.
7
Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats.
J Biomed Mater Res A. 2018 Dec;106(12):3303-3312. doi: 10.1002/jbm.a.36530. Epub 2018 Sep 22.
8
Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing.
Acta Biomater. 2020 May;108:153-167. doi: 10.1016/j.actbio.2020.03.035. Epub 2020 Apr 5.
10
3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration.
Acta Biomater. 2015 Nov;27:88-100. doi: 10.1016/j.actbio.2015.09.003. Epub 2015 Sep 5.

引用本文的文献

2
3
Bicomponent nano- and microfiber aerogels for effective management of junctional hemorrhage.
Nat Commun. 2025 Mar 11;16(1):2403. doi: 10.1038/s41467-025-57836-0.
5
Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.
Biomater Res. 2025 Jan 22;29:0132. doi: 10.34133/bmr.0132. eCollection 2025.
6
Expandable Microspheres Transform 2D Electrospun Mats Into 3D Composite Scaffolds.
Macromol Rapid Commun. 2024 Dec 8:e2400882. doi: 10.1002/marc.202400882.
7
Tissue-engineered Bicipital Autologous Tendon Patch Enhances Massive Rotator Cuff Defect Repair in a Rabbit Infraspinatus Tendon Defect Model.
Clin Orthop Relat Res. 2024 Dec 1;482(12):2239-2255. doi: 10.1097/CORR.0000000000003218. Epub 2024 Sep 17.
8
Adapting to the acidic environment of the NP: RADA16-PLGA (TGF-β3) induces chondrogenic differentiation of BMSCs.
Nanomedicine (Lond). 2024;19(18-20):1675-1688. doi: 10.1080/17435889.2024.2372242. Epub 2024 Sep 10.
9
Novel Biomaterials for Wound Healing and Tissue Regeneration.
ACS Omega. 2024 Jul 16;9(30):32268-32286. doi: 10.1021/acsomega.4c02775. eCollection 2024 Jul 30.
10
Orthogonally woven 3D nanofiber scaffolds promote rapid soft tissue regeneration by enhancing bidirectional cell migration.
Bioact Mater. 2024 May 30;39:582-594. doi: 10.1016/j.bioactmat.2024.04.025. eCollection 2024 Sep.

本文引用的文献

1
Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique.
ACS Biomater Sci Eng. 2015 Oct 12;1(10):991-1001. doi: 10.1021/acsbiomaterials.5b00238. Epub 2015 Aug 27.
4
Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel.
Dent Mater. 2019 Jul;35(7):990-1006. doi: 10.1016/j.dental.2019.04.004. Epub 2019 Apr 23.
5
Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering.
Adv Mater. 2019 Apr;31(17):e1900291. doi: 10.1002/adma.201900291. Epub 2019 Mar 7.
6
Engineering biological gradients.
J Appl Biomater Funct Mater. 2019 Jan-Mar;17(1):2280800019829023. doi: 10.1177/2280800019829023.
7
Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine.
Nano Lett. 2019 Mar 13;19(3):2059-2065. doi: 10.1021/acs.nanolett.9b00217. Epub 2019 Feb 22.
8
Bio-Inspired Micropatterned Platforms Recapitulate 3D Physiological Morphologies of Bone and Dentinal Cells.
Adv Sci (Weinh). 2018 Oct 12;5(12):1801037. doi: 10.1002/advs.201801037. eCollection 2018 Dec.
9
Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanuts") and their potential applications in hemostasis.
Biomaterials. 2018 Oct;179:46-59. doi: 10.1016/j.biomaterials.2018.06.031. Epub 2018 Jun 22.
10
Repair of Critical-Sized Mandible Defects in Aged Rat Using Hypoxia Preconditioned BMSCs with Up-regulation of Hif-1α.
Int J Biol Sci. 2018 Mar 11;14(4):449-460. doi: 10.7150/ijbs.24158. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验