Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA.
Sci Transl Med. 2020 Sep 30;12(563). doi: 10.1126/scitranslmed.aba8412.
is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series. Members of this series blocked growth in in vitro culture of three isolates with EC s in 1% serum of <0.4 to 96 nM, had comparable potencies against and , and was effective in three of four highly susceptible immunosuppressed mice with once-daily dosing administered for 4 days beginning 2 weeks after infection. Comprehensive genetic, biochemical, and chemical studies demonstrated inhibition of phenylalanyl-tRNA synthetase (PheRS) as the mode of action of this new lead series. Introduction of mutations directly into the gene by CRISPR-Cas9 genome editing resulted in parasites showing high degrees of compound resistance. In vitro, bicyclic azetidines potently inhibited the aminoacylation activity of recombinant PheRS. Medicinal chemistry optimization led to the identification of an optimal pharmacokinetic/pharmacodynamic profile for this series. Collectively, these data demonstrate that bicyclic azetidines are a promising series for anticryptosporidial drug development and establish a broad framework to enable target-based drug discovery for this infectious disease.
是一种原生动物寄生虫,也是导致幼儿腹泻病和死亡的主要原因。目前,尚无完全有效的治疗方法可治愈这种腹泻病原体感染。在这项研究中,我们报告了一项广泛的药物重新定位工作,该工作导致发现了双环氮杂环丁烷作为一种新的抗隐孢子虫系列。该系列的成员阻止了三种分离株在 1%血清中的体外培养生长,EC 在<0.4 至 96 nM 之间,对 和 具有可比的效力,并且在感染后 2 周开始每天一次给药 4 天的四个高度敏感的免疫抑制小鼠中的三个中有效。全面的遗传,生化和化学研究表明,抑制苯丙氨酸 tRNA 合成酶(PheRS)是该新型先导系列的作用模式。通过 CRISPR-Cas9 基因组编辑直接将突变引入 基因,导致寄生虫对化合物表现出高度的抗性。在体外,双环氮杂环丁烷可有效抑制重组 PheRS 的氨酰化活性。药物化学优化导致该系列具有最佳的药代动力学/药效学特征。总的来说,这些数据表明,双环氮杂环丁烷是一种很有前途的抗隐孢子虫药物开发系列,并为针对这种传染病的基于靶标的药物发现建立了广泛的框架。