Suppr超能文献

在小鼠中,组蛋白 H3.3K36M 突变会导致组蛋白修饰失衡和软骨细胞分化缺陷。

A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation.

机构信息

Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan.

出版信息

Epigenetics. 2021 Oct;16(10):1123-1134. doi: 10.1080/15592294.2020.1841873. Epub 2020 Nov 16.

Abstract

Histone lysine-to-methionine (K-to-M) mutations have been identified as driver mutations in human cancers. Interestingly, these 'oncohistone' mutations inhibit the activity of histone methyltransferases. Therefore, they can potentially be used as versatile tools to investigate the roles of histone modifications. In this study, we generated a genetically engineered mouse line in which an H3.3K36M mutation could be induced in the endogenous gene. Since H3.3K36M has been identified as a causative mutation of human chondroblastoma, we induced this mutation in the chondrocyte lineage in mouse embryonic limbs. We found that H3.3K36M causes a global reduction in H3K36me2 and defects in chondrocyte differentiation. Importantly, the reduction of H3K36me2 was accompanied by a collapse of normal H3K27me3 distribution. Furthermore, the changes in H3K27me3, especially the loss of H3K27me3 at gene regulatory elements, were associated with the mis-regulated expression of a set of genes important for limb development, including HoxA cluster genes. Thus, through the induction of the H3.3K36M mutation, we reveal the importance of maintaining the balance between H3K36me2 and H3K27me3 during chondrocyte differentiation and limb development.

摘要

组蛋白赖氨酸到蛋氨酸(K-to-M)突变已被鉴定为人类癌症中的驱动突变。有趣的是,这些“癌组蛋白”突变抑制了组蛋白甲基转移酶的活性。因此,它们可以潜在地用作多功能工具来研究组蛋白修饰的作用。在这项研究中,我们生成了一种遗传工程小鼠品系,其中可以在内源 基因中诱导 H3.3K36M 突变。由于 H3.3K36M 已被鉴定为人类成软骨细胞瘤的致病突变,我们在小鼠胚胎肢的软骨细胞谱系中诱导了这种突变。我们发现 H3.3K36M 导致 H3K36me2 的全局减少和软骨细胞分化缺陷。重要的是,H3K36me2 的减少伴随着正常 H3K27me3 分布的崩溃。此外,H3K27me3 的变化,特别是基因调控元件处 H3K27me3 的丢失,与一组对肢体发育很重要的基因的失调表达有关,包括 HoxA 簇基因。因此,通过 H3.3K36M 突变的诱导,我们揭示了在软骨细胞分化和肢体发育过程中维持 H3K36me2 和 H3K27me3 之间平衡的重要性。

相似文献

1
A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation.
Epigenetics. 2021 Oct;16(10):1123-1134. doi: 10.1080/15592294.2020.1841873. Epub 2020 Nov 16.
2
Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells.
Cell Cycle. 2017 Oct 2;16(19):1781-1789. doi: 10.1080/15384101.2017.1281483. Epub 2017 Jan 27.
3
Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells.
Epigenetics. 2017;12(11):917-922. doi: 10.1080/15592294.2017.1377870. Epub 2017 Dec 11.
5
The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation.
Mol Cell. 2024 Oct 17;84(20):3899-3915.e7. doi: 10.1016/j.molcel.2024.09.015. Epub 2024 Oct 4.
6
Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana.
Sci China Life Sci. 2018 Feb;61(2):225-234. doi: 10.1007/s11427-017-9162-1. Epub 2017 Sep 26.
7
The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas.
Science. 2016 Jun 10;352(6291):1344-8. doi: 10.1126/science.aae0065. Epub 2016 May 26.
8
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas.
Cell Death Dis. 2021 Mar 24;12(4):311. doi: 10.1038/s41419-021-03597-9.
9
Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks.
Mol Cell. 2021 Dec 2;81(23):4876-4890.e7. doi: 10.1016/j.molcel.2021.10.008. Epub 2021 Nov 4.
10
The H3.3 G34W oncohistone mutation increases K36 methylation by the protein lysine methyltransferase NSD1.
Biochimie. 2022 Jul;198:86-91. doi: 10.1016/j.biochi.2022.03.007. Epub 2022 Mar 24.

引用本文的文献

1
H3K36 methylation regulates cell plasticity and regeneration in the intestinal epithelium.
Nat Cell Biol. 2025 Feb;27(2):202-217. doi: 10.1038/s41556-024-01580-y. Epub 2025 Jan 8.
2
Emerging roles of cancer-associated histone mutations in genomic instabilities.
Front Cell Dev Biol. 2024 Oct 8;12:1455572. doi: 10.3389/fcell.2024.1455572. eCollection 2024.
3
Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis.
Int J Mol Sci. 2024 Sep 7;25(17):9699. doi: 10.3390/ijms25179699.
5
Histone mutations in cancer.
Biochem Soc Trans. 2023 Oct 31;51(5):1749-1763. doi: 10.1042/BST20210567.
6
Oncohistones: Hijacking the histone code.
Annu Rev Cancer Biol. 2022 Apr;6:293-312. doi: 10.1146/annurev-cancerbio-070120-102521. Epub 2022 Jan 18.
8
Mechanisms of Polycomb group protein function in cancer.
Cell Res. 2022 Mar;32(3):231-253. doi: 10.1038/s41422-021-00606-6. Epub 2022 Jan 19.
9
Interplay between chromatin marks in development and disease.
Nat Rev Genet. 2022 Mar;23(3):137-153. doi: 10.1038/s41576-021-00416-x. Epub 2021 Oct 4.
10
Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications.
Front Cell Dev Biol. 2021 Apr 16;9:626708. doi: 10.3389/fcell.2021.626708. eCollection 2021.

本文引用的文献

1
3
The expanding landscape of 'oncohistone' mutations in human cancers.
Nature. 2019 Mar;567(7749):473-478. doi: 10.1038/s41586-019-1038-1. Epub 2019 Mar 20.
4
EGFR Signaling: Friend or Foe for Cartilage?
JBMR Plus. 2019 Feb 13;3(2):e10177. doi: 10.1002/jbm4.10177. eCollection 2019 Feb.
6
The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells.
Mol Cell. 2018 Apr 19;70(2):371-379.e5. doi: 10.1016/j.molcel.2018.02.027. Epub 2018 Mar 29.
7
Evidences for a New Role of miR-214 in Chondrogenesis.
Sci Rep. 2018 Feb 27;8(1):3704. doi: 10.1038/s41598-018-21735-w.
8
Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition.
Science. 2017 Jul 14;357(6347):212-216. doi: 10.1126/science.aam5339.
9
Chondroblastoma: An Update.
Arch Pathol Lab Med. 2017 Jun;141(6):867-871. doi: 10.5858/arpa.2016-0281-RS.
10
PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.
Cell Stem Cell. 2017 May 4;20(5):689-705.e9. doi: 10.1016/j.stem.2017.02.004. Epub 2017 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验