Suppr超能文献

H3K36me2 的耗竭再现了 H3.3K36M 致癌组蛋白突变诱导的表观遗传和表型变化。

Depletion of H3K36me2 recapitulates epigenomic and phenotypic changes induced by the H3.3K36M oncohistone mutation.

机构信息

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032.

Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2021795118.

Abstract

Hotspot histone H3 mutations have emerged as drivers of oncogenesis in cancers of multiple lineages. Specifically, H3 lysine 36 to methionine (H3K36M) mutations are recurrently identified in chondroblastomas, undifferentiated sarcomas, and head and neck cancers. While the mutation reduces global levels of both H3K36 dimethylation (H3K36me2) and trimethylation (H3K36me3) by dominantly inhibiting their respective specific methyltransferases, the relative contribution of these methylation states to the chromatin and phenotypic changes associated with H3K36M remains unclear. Here, we specifically deplete H3K36me2 or H3K36me3 in mesenchymal cells, using CRISPR-Cas9 to separately knock out the corresponding methyltransferases NSD1/2 or SETD2. By profiling and comparing the epigenomic and transcriptomic landscapes of these cells with cells expressing the H3.3K36M oncohistone, we find that the loss of H3K36me2 could largely recapitulate H3.3K36M's effect on redistribution of H3K27 trimethylation (H3K27me3) and gene expression. Consistently, knockout of , but not , phenocopies the differentiation blockade and hypersensitivity to the DNA-hypomethylating agent induced by H3K36M. Together, our results support a functional divergence between H3K36me2 and H3K36me3 and their nonredundant roles in H3K36M-driven oncogenesis.

摘要

热点组蛋白 H3 突变已成为多种谱系癌症发生肿瘤的驱动因素。具体来说,H3 赖氨酸 36 到蛋氨酸(H3K36M)突变在软骨母细胞瘤、未分化肉瘤和头颈部癌症中经常被发现。虽然该突变通过显性抑制其各自的特异性甲基转移酶,从而降低 H3K36 二甲基化(H3K36me2)和三甲基化(H3K36me3)的总体水平,但这些甲基化状态对与 H3K36M 相关的染色质和表型变化的相对贡献尚不清楚。在这里,我们使用 CRISPR-Cas9 特异性地在间充质细胞中耗尽 H3K36me2 或 H3K36me3,分别敲除相应的甲基转移酶 NSD1/2 或 SETD2。通过对这些细胞的表观基因组和转录组图谱进行分析和比较,以及与表达 H3.3K36M 致癌组蛋白的细胞进行比较,我们发现 H3K36me2 的缺失可以很大程度上重现 H3.3K36M 对 H3K27 三甲基化(H3K27me3)和基因表达重新分布的影响。一致地, 但不是 ,的敲除模拟了由 H3K36M 引起的分化阻滞和对 DNA-低甲基化剂的敏感性增加。总的来说,我们的结果支持 H3K36me2 和 H3K36me3 之间的功能分化,以及它们在 H3K36M 驱动的肿瘤发生中的非冗余作用。

相似文献

2
Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells.
Epigenetics. 2017;12(11):917-922. doi: 10.1080/15592294.2017.1377870. Epub 2017 Dec 11.
3
The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation.
Mol Cell. 2024 Oct 17;84(20):3899-3915.e7. doi: 10.1016/j.molcel.2024.09.015. Epub 2024 Oct 4.
4
Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells.
Cell Cycle. 2017 Oct 2;16(19):1781-1789. doi: 10.1080/15384101.2017.1281483. Epub 2017 Jan 27.
6
The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas.
Science. 2016 Jun 10;352(6291):1344-8. doi: 10.1126/science.aae0065. Epub 2016 May 26.
7
Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana.
Sci China Life Sci. 2018 Feb;61(2):225-234. doi: 10.1007/s11427-017-9162-1. Epub 2017 Sep 26.
8
The H3.3 G34W oncohistone mutation increases K36 methylation by the protein lysine methyltransferase NSD1.
Biochimie. 2022 Jul;198:86-91. doi: 10.1016/j.biochi.2022.03.007. Epub 2022 Mar 24.
9
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas.
Cell Death Dis. 2021 Mar 24;12(4):311. doi: 10.1038/s41419-021-03597-9.
10
A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation.
Epigenetics. 2021 Oct;16(10):1123-1134. doi: 10.1080/15592294.2020.1841873. Epub 2020 Nov 16.

引用本文的文献

3
Histone H3E50K remodels chromatin to confer oncogenic activity and support an EMT phenotype.
NAR Cancer. 2025 Feb 3;7(1):zcaf002. doi: 10.1093/narcan/zcaf002. eCollection 2025 Mar.
5
Emerging roles of cancer-associated histone mutations in genomic instabilities.
Front Cell Dev Biol. 2024 Oct 8;12:1455572. doi: 10.3389/fcell.2024.1455572. eCollection 2024.
7
The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation.
Mol Cell. 2024 Oct 17;84(20):3899-3915.e7. doi: 10.1016/j.molcel.2024.09.015. Epub 2024 Oct 4.
9
Crosstalk within and beyond the Polycomb repressive system.
J Cell Biol. 2024 May 6;223(5). doi: 10.1083/jcb.202311021. Epub 2024 Mar 20.
10
Loss of NSD2 causes dysregulation of synaptic genes and altered H3K36 dimethylation in mice.
Front Genet. 2024 Feb 14;15:1308234. doi: 10.3389/fgene.2024.1308234. eCollection 2024.

本文引用的文献

1
Global Regulation of the Histone Mark H3K36me2 Underlies Epithelial Plasticity and Metastatic Progression.
Cancer Discov. 2020 Jun;10(6):854-871. doi: 10.1158/2159-8290.CD-19-1299. Epub 2020 Mar 18.
2
DNMT3A reads and connects histone H3K36me2 to DNA methylation.
Protein Cell. 2020 Feb;11(2):150-154. doi: 10.1007/s13238-019-00672-y.
3
Interferon target-gene expression and epigenomic signatures in health and disease.
Nat Immunol. 2019 Dec;20(12):1574-1583. doi: 10.1038/s41590-019-0466-2. Epub 2019 Nov 19.
6
Histone H3K36I mutation in a metastatic histiocytic tumor of the skull and response to sarcoma chemotherapy.
Cold Spring Harb Mol Case Stud. 2019 Oct 23;5(5). doi: 10.1101/mcs.a004606. Print 2019 Oct.
7
Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas.
Cancer Cell. 2019 Sep 16;36(3):338-339. doi: 10.1016/j.ccell.2019.08.012.
8
The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape.
Nature. 2019 Sep;573(7773):281-286. doi: 10.1038/s41586-019-1534-3. Epub 2019 Sep 4.
9
Understanding histone H3 lysine 36 methylation and its deregulation in disease.
Cell Mol Life Sci. 2019 Aug;76(15):2899-2916. doi: 10.1007/s00018-019-03144-y. Epub 2019 May 30.
10
Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer.
Cancers (Basel). 2019 May 13;11(5):660. doi: 10.3390/cancers11050660.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验