Suppr超能文献

基于智能手机采集的 PPG 信号预测血管老化。

Prediction of vascular aging based on smartphone acquired PPG signals.

机构信息

Department of Physics and Astronomy, University of Bologna, 40126, Bologna, BO, Italy.

Department of Specialised, Diagnostic and Experimental Medicine, University of Bologna, 40126, Bologna, BO, Italy.

出版信息

Sci Rep. 2020 Nov 12;10(1):19756. doi: 10.1038/s41598-020-76816-6.

Abstract

Photoplethysmography (PPG) measured by smartphone has the potential for a large scale, non-invasive, and easy-to-use screening tool. Vascular aging is linked to increased arterial stiffness, which can be measured by PPG. We investigate the feasibility of using PPG to predict healthy vascular aging (HVA) based on two approaches: machine learning (ML) and deep learning (DL). We performed data preprocessing, including detrending, demodulating, and denoising on the raw PPG signals. For ML, ridge penalized regression has been applied to 38 features extracted from PPG, whereas for DL several convolutional neural networks (CNNs) have been applied to the whole PPG signals as input. The analysis has been conducted using the crowd-sourced Heart for Heart data. The prediction performance of ML using two features (AUC of 94.7%) - the a wave of the second derivative PPG and tpr, including four covariates, sex, height, weight, and smoking - was similar to that of the best performing CNN, 12-layer ResNet (AUC of 95.3%). Without having the heavy computational cost of DL, ML might be advantageous in finding potential biomarkers for HVA prediction. The whole workflow of the procedure is clearly described, and open software has been made available to facilitate replication of the results.

摘要

智能手机测量的光体积描记法(PPG)具有大规模、非侵入性和易于使用的筛选工具的潜力。血管老化与动脉僵硬增加有关,而 PPG 可以测量动脉僵硬。我们研究了基于两种方法(机器学习(ML)和深度学习(DL))使用 PPG 预测健康血管老化(HVA)的可行性。我们对原始 PPG 信号进行了数据预处理,包括去趋势、解调和解噪。对于 ML,我们已经将岭惩罚回归应用于从 PPG 中提取的 38 个特征,而对于 DL,我们已经将几个卷积神经网络(CNN)应用于整个 PPG 信号作为输入。分析是使用众包 Heart for Heart 数据进行的。使用两个特征(AUC 为 94.7%)的 ML 预测性能 - 第二衍生物 PPG 的 a 波和 tpr,包括四个协变量,性别、身高、体重和吸烟 - 与表现最佳的 CNN(AUC 为 95.3%)相似。没有 DL 的繁重计算成本,ML 可能在寻找 HVA 预测的潜在生物标志物方面具有优势。该过程的整个工作流程都有明确的描述,并提供了开放软件以方便结果的复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3598/7661535/396ab5cc8f8b/41598_2020_76816_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验