Suppr超能文献

微生理系统:设计、制造与应用

Microphysiological Systems: Design, Fabrication, and Applications.

作者信息

Wang Kai, Man Kun, Liu Jiafeng, Liu Yang, Chen Qi, Zhou Yong, Yang Yong

机构信息

Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States.

North Texas Eye Research Institute, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States.

出版信息

ACS Biomater Sci Eng. 2020 Jun 8;6(6):3231-3257. doi: 10.1021/acsbiomaterials.9b01667. Epub 2020 May 10.

Abstract

Microphysiological systems, including organoids, 3-D printed tissue constructs and organ-on-a-chips (organ chips), are physiologically relevant models and have experienced explosive growth in the past decades. Different from conventional, tissue culture plastic-based models or animal models, microphysiological systems recapitulate key microenvironmental characteristics of human organs and mimic their primary functions. The advent of microphysiological systems is attributed to evolving biomaterials, micro-/nanotechnologies and stem cell biology, which enable the precise control over the matrix properties and the interactions between cells, tissues and organs in physiological conditions. As such, microphysiological systems have been developed to model a broad spectrum of organs from microvasculature, eye, to lung and many others to understand human organ development and disease pathology and facilitate drug discovery. Multiorgans-on-a-chip systems have also been developed by integrating multiple associated organ chips in a single platform, which allows to study and employ the organ function in a systematic approach. Here we first discuss the design principles of microphysiological systems with a focus on the anatomy and physiology of organs, and then review the commonly used fabrication techniques and biomaterials for microphysiological systems. Subsequently, we discuss the recent development of microphysiological systems, and provide our perspectives on advancing microphysiological systems for preclinical investigation and drug discovery of human disease.

摘要

微生理系统,包括类器官、3D打印组织构建体和器官芯片,是具有生理相关性的模型,在过去几十年中经历了爆炸式增长。与传统的基于组织培养塑料的模型或动物模型不同,微生理系统概括了人体器官的关键微环境特征,并模拟其主要功能。微生理系统的出现归因于不断发展的生物材料、微/纳米技术和干细胞生物学,这些技术能够在生理条件下精确控制基质特性以及细胞、组织和器官之间的相互作用。因此,微生理系统已被开发用于模拟从微脉管系统、眼睛到肺以及许多其他器官的广泛谱系,以了解人体器官发育和疾病病理学,并促进药物发现。通过将多个相关的器官芯片集成在一个平台上,还开发了多器官芯片系统,这使得能够以系统的方法研究和应用器官功能。在这里,我们首先讨论微生理系统的设计原则,重点是器官的解剖学和生理学,然后回顾微生理系统常用的制造技术和生物材料。随后,我们讨论微生理系统的最新进展,并就推进微生理系统用于人类疾病的临床前研究和药物发现提供我们的观点。

相似文献

1
Microphysiological Systems: Design, Fabrication, and Applications.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3231-3257. doi: 10.1021/acsbiomaterials.9b01667. Epub 2020 May 10.
3
Organs-on-a-Chip.
Adv Exp Med Biol. 2020;1230:27-42. doi: 10.1007/978-3-030-36588-2_3.
4
Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
Biosens Bioelectron. 2023 Jul 1;231:115271. doi: 10.1016/j.bios.2023.115271. Epub 2023 Mar 31.
5
Human organ chips for regenerative pharmacology.
Pharmacol Res Perspect. 2024 Feb;12(1):e01159. doi: 10.1002/prp2.1159.
6
Imaging microphysiological systems: a review.
Am J Physiol Cell Physiol. 2021 May 1;320(5):C669-C680. doi: 10.1152/ajpcell.00186.2020. Epub 2020 Dec 23.
7
Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research.
Adv Exp Med Biol. 2017;1031:405-415. doi: 10.1007/978-3-319-67144-4_23.
8
Tailoring biomaterials for biomimetic organs-on-chips.
Mater Horiz. 2023 Oct 30;10(11):4724-4745. doi: 10.1039/d3mh00755c.
9
The relevance and potential roles of microphysiological systems in biology and medicine.
Exp Biol Med (Maywood). 2014 Sep;239(9):1061-72. doi: 10.1177/1535370214542068.
10
Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
Exp Biol Med (Maywood). 2017 Oct;242(16):1593-1604. doi: 10.1177/1535370217708976. Epub 2017 May 15.

引用本文的文献

1
State-of-the-Art Organ-on-Chip Models and Designs for Medical Applications: A Systematic Review.
Biomimetics (Basel). 2025 Aug 11;10(8):524. doi: 10.3390/biomimetics10080524.
2
Assessment of drug permeability using a small airway microphysiological system.
Front Pharmacol. 2025 Jul 17;16:1621775. doi: 10.3389/fphar.2025.1621775. eCollection 2025.
3
Advances in human organs-on-chips and applications for drug screening and personalized medicine.
Fundam Res. 2024 Feb 22;5(3):1258-1272. doi: 10.1016/j.fmre.2023.12.019. eCollection 2025 May.
4
Organoids-on-Chips Technology: Unveiling New Perspectives in Rare-Disease Research.
Int J Mol Sci. 2025 May 4;26(9):4367. doi: 10.3390/ijms26094367.
6
Fluid and solute transport by cells and a model of systemic circulation.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012935. doi: 10.1371/journal.pcbi.1012935. eCollection 2025 Apr.
8
In Vitro Modeling of Idiopathic Pulmonary Fibrosis: Lung-on-a-Chip Systems and Other 3D Cultures.
Int J Mol Sci. 2024 Nov 1;25(21):11751. doi: 10.3390/ijms252111751.
9
Leveraging animal models of tendon loading to inform tissue engineering approaches.
Front Bioeng Biotechnol. 2024 Oct 7;12:1449372. doi: 10.3389/fbioe.2024.1449372. eCollection 2024.

本文引用的文献

1
3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels.
ACS Biomater Sci Eng. 2017 Mar 13;3(3):399-408. doi: 10.1021/acsbiomaterials.6b00643. Epub 2017 Feb 9.
2
Engineering Brain Organoids to Probe Impaired Neurogenesis Induced by Cadmium.
ACS Biomater Sci Eng. 2018 May 14;4(5):1908-1915. doi: 10.1021/acsbiomaterials.8b00160. Epub 2018 Mar 29.
3
3D Printed Tissue Models: Present and Future.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1722-1731. doi: 10.1021/acsbiomaterials.6b00129. Epub 2016 May 6.
4
One-Stop Microfluidic Assembly of Human Brain Organoids To Model Prenatal Cannabis Exposure.
Anal Chem. 2020 Mar 17;92(6):4630-4638. doi: 10.1021/acs.analchem.0c00205. Epub 2020 Feb 28.
5
Review of 3D Cell Culture with Analysis in Microfluidic Systems.
Anal Methods. 2019 Sep 7;11(33):4220-4232. doi: 10.1039/c9ay01328h. Epub 2019 Aug 6.
6
Multiorgan microfluidic platform with breathable lung chamber for inhalation or intravenous drug screening and development.
Biotechnol Bioeng. 2020 Feb;117(2):486-497. doi: 10.1002/bit.27188. Epub 2019 Nov 25.
7
Controlled modelling of human epiblast and amnion development using stem cells.
Nature. 2019 Sep;573(7774):421-425. doi: 10.1038/s41586-019-1535-2. Epub 2019 Sep 11.
9
Multiscale reverse engineering of the human ocular surface.
Nat Med. 2019 Aug;25(8):1310-1318. doi: 10.1038/s41591-019-0531-2. Epub 2019 Aug 5.
10
3D bioprinting of collagen to rebuild components of the human heart.
Science. 2019 Aug 2;365(6452):482-487. doi: 10.1126/science.aav9051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验