Suppr超能文献

一站式微流控组装人类脑类器官以模拟产前大麻暴露。

One-Stop Microfluidic Assembly of Human Brain Organoids To Model Prenatal Cannabis Exposure.

机构信息

Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States.

Department of Physics, Indiana University, Bloomington, Indiana 47405, United States.

出版信息

Anal Chem. 2020 Mar 17;92(6):4630-4638. doi: 10.1021/acs.analchem.0c00205. Epub 2020 Feb 28.

Abstract

Prenatal cannabis exposure (PCE) influences human brain development, but it is challenging to model PCE using animals and current cell culture techniques. Here, we developed a one-stop microfluidic platform to assemble and culture human cerebral organoids from human embryonic stem cells (hESC) to investigate the effect of PCE on early human brain development. By incorporating perfusable culture chambers, air-liquid interface, and one-stop protocol, this microfluidic platform can simplify the fabrication procedure and produce a large number of organoids (169 organoids per 3.5 cm × 3.5 cm device area) without fusion, as compared with conventional fabrication methods. These one-stop microfluidic assembled cerebral organoids not only recapitulate early human brain structure, biology, and electrophysiology but also have minimal size variation and hypoxia. Under on-chip exposure to the psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), cerebral organoids exhibited reduced neuronal maturation, downregulation of cannabinoid receptor type 1 (CB1) receptors, and impaired neurite outgrowth. Moreover, transient on-chip THC treatment also decreased spontaneous firing in these organoids. This one-stop microfluidic technique enables a simple, scalable, and repeatable organoid culture method that can be used not only for human brain organoids but also for many other human organoids including liver, kidney, retina, and tumor organoids. This technology could be widely used in modeling brain and other organ development, developmental disorders, developmental pharmacology and toxicology, and drug screening.

摘要

产前大麻暴露 (PCE) 会影响人类大脑发育,但使用动物和当前细胞培养技术来模拟 PCE 具有挑战性。在这里,我们开发了一种一站式微流控平台,用于从人类胚胎干细胞 (hESC) 组装和培养人类大脑类器官,以研究 PCE 对早期人类大脑发育的影响。通过结合可灌注培养室、气液界面和一站式方案,与传统制造方法相比,该微流控平台可以简化制造过程并产生大量类器官(每个 3.5cm×3.5cm 器件面积有 169 个类器官),而不会发生融合。与传统制造方法相比,这些一站式微流控组装的大脑类器官不仅再现了早期人类大脑的结构、生物学和电生理学,而且具有最小的尺寸变化和缺氧。在芯片上暴露于精神活性大麻素 Δ-9-四氢大麻酚 (THC) 下,大脑类器官表现出神经元成熟减少、大麻素受体 1 (CB1) 受体下调和神经突生长受损。此外,芯片上短暂的 THC 处理也降低了这些类器官中的自发放电。这种一站式微流控技术可实现简单、可扩展和可重复的类器官培养方法,不仅可用于人类大脑类器官,还可用于许多其他人类类器官,包括肝、肾、视网膜和肿瘤类器官。该技术可广泛用于模拟大脑和其他器官发育、发育障碍、发育药理学和毒理学以及药物筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验