Castiglione Héloïse, Madrange Lucie, Baquerre Camille, Maisonneuve Benoît Guy Christian, Lemonnier Thomas, Deslys Jean-Philippe, Yates Frank, Honegger Thibault, Rontard Jessica, Vigneron Pierre-Antoine
SupBiotech, Ecole d'Ingénieurs en Biotechnologies, Villejuif, France.
Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Service d'Etude des Prions et des Infections Atypiques (SEPIA), Université Paris-Saclay, Fontenay-aux-Roses, France.
Sci Rep. 2025 Aug 11;15(1):29431. doi: 10.1038/s41598-025-14425-x.
Cerebral organoids offer significant potential for neuroscience research as complex in vitro models that mimic human brain development. However, challenges related to their quality and reproducibility hinder their reliability. Discrepancies in morphology, size, cellular composition, and cytoarchitectural organization limit their applications, particularly in disease modeling, drug screening, and neurotoxicity testing. Critically, current methods for organoid characterization often lack standardization, restricting their broader applicability. To address the need for standardized quality assessment of cerebral organoids, we developed a Quality Control (QC) methodology for 60-day cortical organoids, evaluating five key criteria using a scoring system: morphology, size and growth profile, cellular composition, cytoarchitectural organization, and cytotoxicity. We implemented a hierarchical approach, beginning with non-invasive assessments to exclude low-quality organoids, while reserving in-depth analyses for those that passed the initial evaluation. To validate this framework, we exposed 60-day cortical organoids to graded doses of hydrogen peroxide (HO), inducing a range of quality outcomes. The QC system demonstrated its robustness by accurately discriminating organoid qualities. Our proposed QC framework is designed to be user-friendly, flexible, and broadly applicable, making it suitable for routine assessment of cerebral organoid quality. Additionally, its scalability enables industrial applications, offering a valuable tool for advancing both fundamental and pre-clinical research.
The online version contains supplementary material available at 10.1038/s41598-025-14425-x.
脑类器官作为模拟人类大脑发育的复杂体外模型,为神经科学研究提供了巨大潜力。然而,与其质量和可重复性相关的挑战阻碍了它们的可靠性。形态、大小、细胞组成和细胞结构组织方面的差异限制了它们的应用,特别是在疾病建模、药物筛选和神经毒性测试中。至关重要的是,目前用于类器官表征的方法往往缺乏标准化,限制了它们更广泛的适用性。为满足对脑类器官进行标准化质量评估的需求,我们开发了一种针对60天龄皮质类器官的质量控制(QC)方法,使用评分系统评估五个关键标准:形态、大小和生长曲线、细胞组成、细胞结构组织和细胞毒性。我们采用了一种分层方法,从非侵入性评估开始以排除低质量类器官,而对通过初始评估的类器官进行深入分析。为验证这个框架,我们将60天龄皮质类器官暴露于分级剂量的过氧化氢(HO)中,诱导出一系列质量结果。质量控制系统通过准确区分类器官质量证明了其稳健性。我们提出的质量控制框架设计得用户友好、灵活且广泛适用,使其适用于脑类器官质量的常规评估。此外,其可扩展性使其能够应用于工业领域,为推进基础研究和临床前研究提供了一个有价值的工具。
在线版本包含可在10.1038/s41598-025-14425-x获取的补充材料。