Suppr超能文献

ENNAACT 是一种新颖的工具,它使用神经网络对治疗性肽进行抗癌活性分类。

ENNAACT is a novel tool which employs neural networks for anticancer activity classification for therapeutic peptides.

机构信息

UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.

UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.

出版信息

Biomed Pharmacother. 2021 Jan;133:111051. doi: 10.1016/j.biopha.2020.111051. Epub 2020 Nov 27.

Abstract

The prevalence of cancer as a threat to human life, responsible for 9.6 million deaths worldwide in 2018, motivates the search for new anticancer agents. While many options are currently available for treatment, these are often expensive and impact the human body unfavourably. Anticancer peptides represent a promising emerging field of anticancer therapeutics, which are characterized by favourable toxicity profile. The development of accurate in silico methods for anticancer peptide prediction is of paramount importance, as the amount of available sequence data is growing each year. This study leverages advances in machine learning research to produce a novel sequence-based deep neural network classifier for anticancer peptide activity. The classifier achieves performance comparable to the best-in-class, with a cross-validated accuracy of 98.3%, Matthews correlation coefficient of 0.91 and an Area Under the Curve of 0.95. This innovative classifier is available as a web server at https://research.timmons.eu/ennaact, facilitating in silico screening and design of new anticancer peptide chemotherapeutics by the research community.

摘要

癌症作为对人类生命的威胁,在 2018 年导致了全球 960 万人死亡,这促使人们寻找新的抗癌药物。虽然目前有许多治疗方法,但这些方法往往价格昂贵,对人体不利。抗癌肽是一种很有前途的新兴抗癌治疗药物领域,其特点是毒性谱良好。开发准确的抗癌肽预测计算方法至关重要,因为每年可用的序列数据量都在增加。本研究利用机器学习研究的进展,开发了一种新的基于序列的深度神经网络抗癌肽活性分类器。该分类器的性能可与同类最佳方法相媲美,交叉验证准确率为 98.3%,马修斯相关系数为 0.91,曲线下面积为 0.95。这个创新的分类器可以作为一个网络服务器在 https://research.timmons.eu/ennaact 上使用,为研究社区提供了新的抗癌肽化疗药物的计算机筛选和设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验