Suppr超能文献

利用深度学习和合理修饰设计抗菌肽:在细菌、白色念珠菌和癌细胞中的活性

Antimicrobial Peptides Design Using Deep Learning and Rational Modifications: Activity in Bacteria, Candida albicans, and Cancer Cells.

作者信息

Mesa Andrea, Orrego Andrés, Branch-Bedoya John W, Mera-Banguero Carlos, Orduz Sergio

机构信息

Departamento de Biociencias, Facultad de Ciencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 #59A-110, Medellín, 050034, Colombia.

Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Avenida 80 #65-223, Medellín, 050036, Colombia.

出版信息

Curr Microbiol. 2025 Jul 11;82(9):379. doi: 10.1007/s00284-025-04346-3.

Abstract

Resistance to antimicrobial agents has become a global threat, estimated to cause 10-million deaths annually by 2050. Antimicrobial peptides are emerging as an alternative and offer advantages over traditional antibiotics. Antimicrobial peptides generated by artificial intelligence (AI) strategies are potential alternatives that reduce costs and development time. This work optimized a set of peptides generated by two deep learning algorithms. The modifications made to the peptides were evaluated with bioinformatic and other AI tools as predictors of antimicrobial activity, hemolytic capacity, and toxicity. As a result, 26 synthetic peptides generated in silico were obtained with a high probability of being antimicrobial and biologically safe. Finally, 12 peptides were synthesized to perform in vitro tests against four bacterial species, Candida albicans, and cancer cells. Results indicate that 9 of the peptides have a MIC below 10 μM, and some have an inhibitory concentration at 2 μM, such as OrP1M for Escherichia coli, OrP9M for Pseudomonas aeruginosa, and VeP1 for Staphylococcus aureus. In addition, six peptides have activity against the breast cancer cell line (MCF-7), and peptide OrP1M had an IC of < 6.25 μM. It is concluded that the synthetic-generated peptides have high antimicrobial activity, but in most cases, their MICs were improved after the modifications were made.

摘要

对抗菌药物的耐药性已成为全球威胁,据估计到2050年每年将导致1000万人死亡。抗菌肽正作为一种替代物出现,并且相对于传统抗生素具有优势。通过人工智能(AI)策略生成的抗菌肽是降低成本和缩短研发时间的潜在替代物。这项工作优化了由两种深度学习算法生成的一组肽。使用生物信息学和其他AI工具作为抗菌活性、溶血能力和毒性的预测指标,对肽的修饰进行了评估。结果,获得了26种计算机模拟生成的合成肽,它们具有很高的抗菌和生物安全性可能性。最后,合成了12种肽,以针对四种细菌、白色念珠菌和癌细胞进行体外测试。结果表明,其中9种肽的最低抑菌浓度(MIC)低于10μM,有些在2μM时具有抑制浓度,例如针对大肠杆菌的OrP1M、针对铜绿假单胞菌的OrP9M和针对金黄色葡萄球菌的VeP1。此外,六种肽对乳腺癌细胞系(MCF-7)具有活性,肽OrP1M的半数抑制浓度(IC)<6.25μM。得出的结论是,合成生成的肽具有很高的抗菌活性,但在大多数情况下,修饰后它们的MIC有所改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b1/12254070/2271781cdcc2/284_2025_4346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验