Escuela de Biociencias, Departamento de Ciencias, Universidad Nacional de Colombia, sede Medellín, Carrera 65 # 59A-110, 050034, Medellín, Antioquia, Colombia.
Departamento de Sistemas de Información, Instituto Tecnológico Metropolitano, Calle 54A # 30-01, 050013, Medellín, Antioquia, Colombia.
Antonie Van Leeuwenhoek. 2024 Mar 15;117(1):55. doi: 10.1007/s10482-024-01946-0.
Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.
抗菌肽 (AMPs) 是一类有前途的阳离子和两亲性分子,可用于对抗抗生素耐药性。为了寻找新型的 AMPs,我们应用了一种计算策略来识别生物体蛋白质组中的肽序列,包括内部开发的软件和人工智能工具。在分析了来自细菌、植物、原生动物和线虫的 8 个蛋白质组中的 150450 种蛋白质后,选择了 9 种肽并进行了修饰以提高其抗菌潜力。对 18 个由此产生的肽进行了测试,方法是用四种致病性细菌、一种酵母和两种癌细胞系进行生物测定。在测试的 18 种肽中,有 14 种具有抗菌活性,对至少三种细菌的最小抑菌浓度 (MIC) 值低于 10µM;有 7 种对白色念珠菌有活性,MIC 值低于 10µM;有 6 种治疗指数高于 20;有 2 种肽对 A549 细胞有活性,有 8 种肽对 MCF-7 细胞的活性低于 30µM。本研究中最有效的抗菌肽会破坏细菌细胞膜,包括形成凹槽、凹陷、膜皱缩、细胞破坏和细胞质物质泄漏。结果证实,该方法使用生物信息学工具和合理的修饰,具有高效性,并能以高精度发现蛋白质中加密的强效 AMPs。