Suppr超能文献

FL-QSAR:基于联邦学习的合作药物发现 QSAR 原型。

FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery.

机构信息

Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Department of AI, WeBank, Shenzhen 518055, China.

出版信息

Bioinformatics. 2021 Apr 1;36(22-23):5492-5498. doi: 10.1093/bioinformatics/btaa1006.

Abstract

MOTIVATION

Quantitative structure-activity relationship (QSAR) analysis is commonly used in drug discovery. Collaborations among pharmaceutical institutions can lead to a better performance in QSAR prediction, however, intellectual property and related financial interests remain substantially hindering inter-institutional collaborations in QSAR modeling for drug discovery.

RESULTS

For the first time, we verified the feasibility of applying the horizontal federated learning (HFL), which is a recently developed collaborative and privacy-preserving learning framework to perform QSAR analysis. A prototype platform of federated-learning-based QSAR modeling for collaborative drug discovery, i.e. FL-QSAR, is presented accordingly. We first compared the HFL framework with a classic privacy-preserving computation framework, i.e. secure multiparty computation to indicate its difference from various perspective. Then we compared FL-QSAR with the public collaboration in terms of QSAR modeling. Our extensive experiments demonstrated that (i) collaboration by FL-QSAR outperforms a single client using only its private data, and (ii) collaboration by FL-QSAR achieves almost the same performance as that of collaboration via cleartext learning algorithms using all shared information. Taking together, our results indicate that FL-QSAR under the HFL framework provides an efficient solution to break the barriers between pharmaceutical institutions in QSAR modeling, therefore promote the development of collaborative and privacy-preserving drug discovery with extendable ability to other privacy-related biomedical areas.

AVAILABILITY AND IMPLEMENTATION

The source codes of FL-QSAR are available on the GitHub: https://github.com/bm2-lab/FL-QSAR.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

定量构效关系 (QSAR) 分析在药物发现中被广泛应用。制药机构之间的合作可以提高 QSAR 预测的性能,但知识产权和相关的财务利益仍然严重阻碍了药物发现中 QSAR 建模的机构间合作。

结果

我们首次验证了应用水平联邦学习(HFL)的可行性,HFL 是一种最近开发的协作和隐私保护学习框架,可用于进行 QSAR 分析。相应地,提出了基于联邦学习的合作药物发现 QSAR 建模的原型平台,即 FL-QSAR。我们首先从不同角度比较了 HFL 框架与经典隐私保护计算框架(即安全多方计算)的区别。然后,我们在 QSAR 建模方面比较了 FL-QSAR 与公开合作的区别。我们的广泛实验表明:(i)FL-QSAR 的协作优于仅使用其私有数据的单个客户端,(ii)FL-QSAR 的协作几乎与使用所有共享信息的明文学习算法的协作具有相同的性能。综上所述,我们的结果表明,HFL 框架下的 FL-QSAR 为打破制药机构在 QSAR 建模方面的障碍提供了有效的解决方案,从而促进了协作和隐私保护药物发现的发展,并具有扩展到其他隐私相关生物医学领域的能力。

可用性和实现

FL-QSAR 的源代码可在 GitHub 上获得:https://github.com/bm2-lab/FL-QSAR。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验