Suppr超能文献

肥胖重塑肿瘤微环境中的代谢以抑制抗肿瘤免疫。

Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity.

机构信息

Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.

出版信息

Cell. 2020 Dec 23;183(7):1848-1866.e26. doi: 10.1016/j.cell.2020.11.009. Epub 2020 Dec 9.

Abstract

Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat diet (HFD)-induced obesity impairs CD8 T cell function in the murine TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8 T cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8 T cells do not. These differential adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8 T cell infiltration and function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis of human cancers reveals similar transcriptional changes in CD8 T cell markers, suggesting interventions that exploit metabolism to improve cancer immunotherapy.

摘要

肥胖是一个主要的癌症风险因素,但系统代谢的差异如何改变肿瘤微环境(TME)并影响抗肿瘤免疫尚不清楚。在这里,我们证明高脂肪饮食(HFD)诱导的肥胖会损害小鼠 TME 中的 CD8 T 细胞功能,从而加速肿瘤生长。我们生成了 TME 中细胞代谢的单细胞分辨率图谱,详细说明了它如何随饮食诱导的肥胖而变化。我们发现肿瘤和 CD8 T 细胞对肥胖有不同的代谢适应。肿瘤细胞在 HFD 下增加脂肪摄取,而肿瘤浸润的 CD8 T 细胞则不会。这些差异适应导致 HFD 肿瘤中脂肪酸分配的改变,从而损害 CD8 T 细胞的浸润和功能。在肥胖小鼠中阻断肿瘤细胞的代谢重编程可改善抗肿瘤免疫。对人类癌症的分析显示 CD8 T 细胞标志物存在相似的转录变化,这表明利用代谢来改善癌症免疫疗法的干预措施。

相似文献

1
Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity.
Cell. 2020 Dec 23;183(7):1848-1866.e26. doi: 10.1016/j.cell.2020.11.009. Epub 2020 Dec 9.
2
Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function.
J Exp Med. 2022 Mar 7;219(3). doi: 10.1084/jem.20210042. Epub 2022 Feb 1.
3
Enhanced tumor response to adoptive T cell therapy with PHD2/3-deficient CD8 T cells.
Nat Commun. 2024 Sep 6;15(1):7789. doi: 10.1038/s41467-024-51782-z.
5
Obesity and CD8 T cell metabolism: Implications for anti-tumor immunity and cancer immunotherapy outcomes.
Immunol Rev. 2020 May;295(1):203-219. doi: 10.1111/imr.12849. Epub 2020 Mar 10.
7
STAT3 Activation-Induced Fatty Acid Oxidation in CD8 T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth.
Cell Metab. 2020 Jan 7;31(1):148-161.e5. doi: 10.1016/j.cmet.2019.10.013. Epub 2019 Nov 21.
9
CD36-mediated ferroptosis dampens intratumoral CD8 T cell effector function and impairs their antitumor ability.
Cell Metab. 2021 May 4;33(5):1001-1012.e5. doi: 10.1016/j.cmet.2021.02.015. Epub 2021 Mar 9.
10
CBX4 suppresses CD8 T cell antitumor immunity by reprogramming glycolytic metabolism.
Theranostics. 2024 Jun 17;14(10):3793-3809. doi: 10.7150/thno.95748. eCollection 2024.

引用本文的文献

3
Identification and experimental validation of prognostic genes related to cytochrome c in breast cancer.
Front Genet. 2025 Aug 11;16:1627134. doi: 10.3389/fgene.2025.1627134. eCollection 2025.
5
Immunometabolic Targets in CD8 T Cells within the Tumor Microenvironment of Hepatocellular Carcinoma.
Liver Cancer. 2024 Nov 21;14(4):474-496. doi: 10.1159/000542578. eCollection 2025 Aug.
6
Palmitic acid and palmitoylation in cancer: Understanding, insights, and challenges.
Innovation (Camb). 2025 Apr 29;6(8):100918. doi: 10.1016/j.xinn.2025.100918. eCollection 2025 Aug 4.
7
PET Imaging of Diabetes-Induced Alterations in Metabolism and Immune Activation.
Mol Imaging Biol. 2025 Aug 12. doi: 10.1007/s11307-025-02027-y.

本文引用的文献

1
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.
Gigascience. 2020 Dec 26;9(12). doi: 10.1093/gigascience/giaa151.
2
The Effects of Obesity on Anti-Cancer Immunity and Cancer Immunotherapy.
Cancers (Basel). 2020 May 14;12(5):1230. doi: 10.3390/cancers12051230.
5
STAT3 Activation-Induced Fatty Acid Oxidation in CD8 T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth.
Cell Metab. 2020 Jan 7;31(1):148-161.e5. doi: 10.1016/j.cmet.2019.10.013. Epub 2019 Nov 21.
6
The ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics.
Nucleic Acids Res. 2020 Jan 8;48(D1):D1145-D1152. doi: 10.1093/nar/gkz984.
7
Functional interpretation of single cell similarity maps.
Nat Commun. 2019 Sep 26;10(1):4376. doi: 10.1038/s41467-019-12235-0.
8
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
10
The Surprisingly Positive Association Between Obesity and Cancer Immunotherapy Efficacy.
JAMA. 2019 Apr 2;321(13):1247-1248. doi: 10.1001/jama.2019.0463.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验