Suppr超能文献

重新构想基于细胞的大型亲电体文库筛选中反应性半胱氨酸的高通量分析。

Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Biotechnol. 2021 May;39(5):630-641. doi: 10.1038/s41587-020-00778-3. Epub 2021 Jan 4.

Abstract

Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS) and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.

摘要

目前用于测量氨基酸侧链反应性的方法缺乏用于筛选整个蛋白质组相互作用的大型化学文库所需的通量。在这里,我们通过使用更小的去硫生物素探针、样品多路复用、减少蛋白质起始量以及在质谱仪上实时增强数据采集的软件,重新设计了活性的基于蛋白质的反应性半胱氨酸残基分析的工作流程。我们的方法,简化的半胱氨酸活性的基于蛋白质的分析(SLC-ABPP),使样品通量提高了 42 倍,对应于每个化合物在 18 分钟内对 >8000 个反应性半胱氨酸位点进行深度分析。我们将其应用于鉴定突变的 Kirsten 大鼠肉瘤(KRAS)和 Bruton 的酪氨酸激酶(BTK)的共价抑制剂的蛋白质组范围内的靶标。此外,我们在三种人类细胞系中创建了针对 285 种亲电试剂的半胱氨酸反应性资源,其中每条线包含来自 >6000 种蛋白质的 >20000 个半胱氨酸。在几种细胞环境下,对千成员文库中的半胱氨酸反应性进行蛋白质组范围分析的目标现在已经触手可及。

相似文献

1
Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.
Nat Biotechnol. 2021 May;39(5):630-641. doi: 10.1038/s41587-020-00778-3. Epub 2021 Jan 4.
2
Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input.
Cell Chem Biol. 2024 Mar 21;31(3):565-576.e4. doi: 10.1016/j.chembiol.2023.11.015. Epub 2023 Dec 19.
4
Bicyclobutane Carboxylic Amide as a Cysteine-Directed Strained Electrophile for Selective Targeting of Proteins.
J Am Chem Soc. 2020 Oct 28;142(43):18522-18531. doi: 10.1021/jacs.0c07490. Epub 2020 Oct 13.
5
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
6
A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
Nat Protoc. 2020 Sep;15(9):2891-2919. doi: 10.1038/s41596-020-0352-2. Epub 2020 Jul 20.
7
Covalent Inhibition by a Natural Product-Inspired Latent Electrophile.
J Am Chem Soc. 2023 May 24;145(20):11097-11109. doi: 10.1021/jacs.3c00598. Epub 2023 May 15.
8
AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues.
J Proteome Res. 2023 Jul 7;22(7):2218-2231. doi: 10.1021/acs.jproteome.2c00703. Epub 2023 Jun 7.
9
Site-specific quantitative cysteine profiling with data-independent acquisition-based mass spectrometry.
Methods Enzymol. 2023;679:295-322. doi: 10.1016/bs.mie.2022.07.037. Epub 2022 Sep 7.
10
Improved Electrophile Design for Exquisite Covalent Molecule Selectivity.
ACS Chem Biol. 2022 Jun 17;17(6):1440-1449. doi: 10.1021/acschembio.1c00980. Epub 2022 May 19.

引用本文的文献

1
COOKIE-Pro: Covalent Inhibitor Binding Kinetics Profiling on the Proteome Scale.
bioRxiv. 2025 Jun 22:2025.06.19.660637. doi: 10.1101/2025.06.19.660637.
2
Probing the proteome.
Nat Biotechnol. 2025 Jul 1. doi: 10.1038/s41587-025-02737-2.
4
Activity-Based Protein Profiling for Functional Cysteines and Protein Target Identification.
Methods Mol Biol. 2025;2921:331-344. doi: 10.1007/978-1-0716-4502-4_18.
7
Covalent inhibition of Ubc13 impairs global protein synthesis.
iScience. 2025 Apr 28;28(6):112545. doi: 10.1016/j.isci.2025.112545. eCollection 2025 Jun 20.
9
Proteome-wide ligandability maps of drugs with diverse cysteine-reactive chemotypes.
Nat Commun. 2025 May 26;16(1):4863. doi: 10.1038/s41467-025-60068-x.

本文引用的文献

1
An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
Cell. 2020 Aug 20;182(4):1009-1026.e29. doi: 10.1016/j.cell.2020.07.001. Epub 2020 Jul 29.
2
Benchmarking the Orbitrap Tribrid Eclipse for Next Generation Multiplexed Proteomics.
Anal Chem. 2020 May 5;92(9):6478-6485. doi: 10.1021/acs.analchem.9b05685. Epub 2020 Apr 15.
3
TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples.
Nat Methods. 2020 Apr;17(4):399-404. doi: 10.1038/s41592-020-0781-4. Epub 2020 Mar 16.
4
Full-Featured, Real-Time Database Searching Platform Enables Fast and Accurate Multiplexed Quantitative Proteomics.
J Proteome Res. 2020 May 1;19(5):2026-2034. doi: 10.1021/acs.jproteome.9b00860. Epub 2020 Apr 6.
5
Structure-Based Design of a Potent and Selective Covalent Inhibitor for SRC Kinase That Targets a P-Loop Cysteine.
J Med Chem. 2020 Feb 27;63(4):1624-1641. doi: 10.1021/acs.jmedchem.9b01502. Epub 2020 Jan 30.
6
Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling.
J Am Chem Soc. 2020 Jan 29;142(4):1801-1810. doi: 10.1021/jacs.9b08831. Epub 2020 Jan 13.
7
Global targeting of functional tyrosines using sulfur-triazole exchange chemistry.
Nat Chem Biol. 2020 Feb;16(2):150-159. doi: 10.1038/s41589-019-0404-5. Epub 2019 Nov 25.
8
Recent Advances in Selective and Irreversible Covalent Ligand Development and Validation.
Cell Chem Biol. 2019 Nov 21;26(11):1486-1500. doi: 10.1016/j.chembiol.2019.09.012. Epub 2019 Oct 17.
9
A probe for every protein.
Nat Rev Drug Discov. 2019 Sep;18(10):733-736. doi: 10.1038/d41573-019-00159-9.
10
Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity.
ACS Chem Biol. 2019 Sep 20;14(9):1940-1950. doi: 10.1021/acschembio.9b00424. Epub 2019 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验