Suppr超能文献

使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。

Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States.

Embedded Systems and Applications Group, Technical University of Darmstadt, Darmstadt D-64289, Germany.

出版信息

J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.

Abstract

AutoDock4 is a widely used program for docking small molecules to macromolecular targets. It describes ligand-receptor interactions using a physics-inspired scoring function that has been proven useful in a variety of drug discovery projects. However, compared to more modern and recent software, AutoDock4 has longer execution times, limiting its applicability to large scale dockings. To address this problem, we describe an OpenCL implementation of AutoDock4, called AutoDock-GPU, that leverages the highly parallel architecture of GPU hardware to reduce docking runtime by up to 350-fold with respect to a single-threaded process. Moreover, we introduce the gradient-based local search method ADADELTA, as well as an improved version of the Solis-Wets random optimizer from AutoDock4. These efficient local search algorithms significantly reduce the number of calls to the scoring function that are needed to produce good results. The improvements reported here, both in terms of docking throughput and search efficiency, facilitate the use of the AutoDock4 scoring function in large scale virtual screening.

摘要

AutoDock4 是一款广泛用于小分子对接大分子靶标的程序。它使用基于物理启发的评分函数描述配体-受体相互作用,该评分函数已在各种药物发现项目中得到证明是有用的。然而,与更现代和最近的软件相比,AutoDock4 的执行时间更长,限制了其在大规模对接中的应用。为了解决这个问题,我们描述了一种称为 AutoDock-GPU 的 AutoDock4 的 OpenCL 实现,它利用 GPU 硬件的高度并行架构,将对接运行时间相对于单线程进程缩短了 350 倍。此外,我们引入了基于梯度的局部搜索方法 ADADELTA,以及 AutoDock4 中 Solis-Wets 随机优化器的改进版本。这些高效的局部搜索算法显著减少了产生良好结果所需的评分函数调用次数。报告的这些改进,无论是在对接吞吐量还是搜索效率方面,都有助于在大规模虚拟筛选中使用 AutoDock4 评分函数。

相似文献

1
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
2
Accelerating AutoDock Vina with GPUs.
Molecules. 2022 May 9;27(9):3041. doi: 10.3390/molecules27093041.
3
MSLDOCK: Multi-Swarm Optimization for Flexible Ligand Docking and Virtual Screening.
J Chem Inf Model. 2021 Mar 22;61(3):1500-1515. doi: 10.1021/acs.jcim.0c01358. Epub 2021 Mar 3.
4
Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives with Graphics Processing Units.
J Chem Inf Model. 2023 Apr 10;63(7):1982-1998. doi: 10.1021/acs.jcim.2c01504. Epub 2023 Mar 20.
5
Accelerated CDOCKER with GPUs, Parallel Simulated Annealing, and Fast Fourier Transforms.
J Chem Theory Comput. 2020 Jun 9;16(6):3910-3919. doi: 10.1021/acs.jctc.0c00145. Epub 2020 May 18.
6
Vina-GPU 2.1: Towards Further Optimizing Docking Speed and Precision of AutoDock Vina and Its Derivatives.
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2382-2393. doi: 10.1109/TCBB.2024.3467127. Epub 2024 Dec 10.
8
Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking.
BMC Bioinformatics. 2020 Jul 6;21(1):286. doi: 10.1186/s12859-020-03630-2.
9
Benchmarking the Performance of Irregular Computations in AutoDock-GPU Molecular Docking.
Parallel Comput. 2022 Mar;109. doi: 10.1016/j.parco.2021.102861. Epub 2021 Nov 11.

引用本文的文献

3
Structure-based rational design of covalent probes.
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
6
Green Synthesis of Gold Nanoparticles and Their Cytotoxic Effect in Breast Cancer: An Experimental and Theoretical Study.
ACS Appl Bio Mater. 2025 Aug 18;8(8):7490-7503. doi: 10.1021/acsabm.5c01172. Epub 2025 Jul 31.
7
Discovery and optimization of a guanylhydrazone-based small molecule to replace bFGF for cell culture applications.
Biochem Biophys Rep. 2025 Jul 21;43:102167. doi: 10.1016/j.bbrep.2025.102167. eCollection 2025 Sep.
8
Neurobiological and Chemical Characterization of the Cyanobacterial Metabolite Veraguamide E.
bioRxiv. 2025 Jun 22:2025.06.19.660581. doi: 10.1101/2025.06.19.660581.
9
Ultrahigh-Throughput Virtual Screening Strategies against PPI Targets: A Case Study of STAT Inhibitors.
J Chem Inf Model. 2025 Jul 28;65(14):7734-7748. doi: 10.1021/acs.jcim.5c00907. Epub 2025 Jul 4.
10
Screening and discovery of an antiviral candidate inhibiting the SARS-CoV-2 envelope (2-E) channel.
Curr Res Microb Sci. 2025 May 22;9:100409. doi: 10.1016/j.crmicr.2025.100409. eCollection 2025.

本文引用的文献

1
Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity.
J Chem Inf Model. 2020 Jan 27;60(1):204-211. doi: 10.1021/acs.jcim.9b00778. Epub 2020 Jan 7.
2
D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.
J Comput Aided Mol Des. 2019 Dec;33(12):1071-1081. doi: 10.1007/s10822-019-00241-9. Epub 2019 Nov 6.
3
Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4.
J Comput Aided Mol Des. 2019 Dec;33(12):1011-1020. doi: 10.1007/s10822-019-00240-w. Epub 2019 Nov 6.
4
AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions.
Bioinformatics. 2019 Oct 1;35(19):3836-3838. doi: 10.1093/bioinformatics/btz152.
5
Ultra-large library docking for discovering new chemotypes.
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.
6
Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package.
J Comput Chem. 2018 Jul 15;39(19):1354-1358. doi: 10.1002/jcc.25187. Epub 2018 Mar 12.
7
Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms.
High Perform Comput (2016). 2016 Jun;9945:188-206. doi: 10.1007/978-3-319-46079-6_14. Epub 2016 Oct 6.
8
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
9
Directional Phosphorylation and Nuclear Transport of the Splicing Factor SRSF1 Is Regulated by an RNA Recognition Motif.
J Mol Biol. 2016 Jun 5;428(11):2430-2445. doi: 10.1016/j.jmb.2016.04.009. Epub 2016 Apr 15.
10
Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
Nat Protoc. 2016 May;11(5):905-19. doi: 10.1038/nprot.2016.051. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验