Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States.
Embedded Systems and Applications Group, Technical University of Darmstadt, Darmstadt D-64289, Germany.
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
AutoDock4 is a widely used program for docking small molecules to macromolecular targets. It describes ligand-receptor interactions using a physics-inspired scoring function that has been proven useful in a variety of drug discovery projects. However, compared to more modern and recent software, AutoDock4 has longer execution times, limiting its applicability to large scale dockings. To address this problem, we describe an OpenCL implementation of AutoDock4, called AutoDock-GPU, that leverages the highly parallel architecture of GPU hardware to reduce docking runtime by up to 350-fold with respect to a single-threaded process. Moreover, we introduce the gradient-based local search method ADADELTA, as well as an improved version of the Solis-Wets random optimizer from AutoDock4. These efficient local search algorithms significantly reduce the number of calls to the scoring function that are needed to produce good results. The improvements reported here, both in terms of docking throughput and search efficiency, facilitate the use of the AutoDock4 scoring function in large scale virtual screening.
AutoDock4 是一款广泛用于小分子对接大分子靶标的程序。它使用基于物理启发的评分函数描述配体-受体相互作用,该评分函数已在各种药物发现项目中得到证明是有用的。然而,与更现代和最近的软件相比,AutoDock4 的执行时间更长,限制了其在大规模对接中的应用。为了解决这个问题,我们描述了一种称为 AutoDock-GPU 的 AutoDock4 的 OpenCL 实现,它利用 GPU 硬件的高度并行架构,将对接运行时间相对于单线程进程缩短了 350 倍。此外,我们引入了基于梯度的局部搜索方法 ADADELTA,以及 AutoDock4 中 Solis-Wets 随机优化器的改进版本。这些高效的局部搜索算法显著减少了产生良好结果所需的评分函数调用次数。报告的这些改进,无论是在对接吞吐量还是搜索效率方面,都有助于在大规模虚拟筛选中使用 AutoDock4 评分函数。