Suppr超能文献

低浓度聚乙二醇有助于从支气管肺泡灌洗液中分离细胞外囊泡。

Low concentration of polyethylene glycol facilitates separation of extracellular vesicles from bronchoalveolar lavage fluid.

机构信息

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts.

Department of Biology and Chemistry, Changwon National University, Changwon, Korea.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2021 Apr 1;320(4):L522-L529. doi: 10.1152/ajplung.00318.2020. Epub 2021 Jan 13.

Abstract

Extracellular vesicles (EVs) in bodily fluids play an essential role in cell-cell cross talk and potentially serve as novel biomarkers in "liquid biopsy." It is crucial to have a consistent, efficient, and reliable method to separate EVs from bodily fluids. Currently, there is no universally accepted, "best" method to separate EVs. Besides differential ultracentrifugation (UC), polyethylene glycol (PEG) is among the commonly used methods for EV separation from bodily fluids. However, the optimal concentration of PEG to be used remains inadequately addressed. We initially observed that the concentration of PEG has a significant impact on the amount of separated EVs and EV-cargos, which are recovered from bronchoalveolar lavage fluid (BALF). To determine the optimal PEG concentration to be used in EV separation from BALF, we first separated the BALF and serum from wild-type C57BL/6 mice. Next, various concentrations of PEG (5%, 10%, and 15% PEG), a commercial kit, and UC were used to obtain EVs from BALF and serum. EVs were characterized, and EV-cargo protein, RNA, and miRNA levels were determined. We found that high concentration of PEG (10% and 15%) altered various EV parameters that are frequently used in EV studies, including EV yield, purity, and morphology. Using miR-15a, miR-142, and miR-223 as examples, we found that 10% and 15% PEG robustly reduced the detected levels of EV-cargo miRNAs compared with those in the EVs separated using UC or 5% PEG. Collectively, low concentration of PEG facilitates the optimal BALF EV separation.

摘要

体液中的细胞外囊泡 (EVs) 在细胞间通讯中发挥着重要作用,并可能作为“液体活检”中的新型生物标志物。拥有一种一致、高效和可靠的方法来从体液中分离 EVs 至关重要。目前,还没有一种被普遍接受的、“最佳”的方法来分离 EVs。除了差速超速离心 (UC) 之外,聚乙二醇 (PEG) 也是从体液中分离 EV 的常用方法之一。然而,PEG 的最佳浓度仍未得到充分解决。我们最初观察到,PEG 的浓度对从支气管肺泡灌洗液 (BALF) 中分离出的 EV 和 EV cargos 的数量有显著影响。为了确定从 BALF 中分离 EV 时使用的最佳 PEG 浓度,我们首先从野生型 C57BL/6 小鼠中分离出 BALF 和血清。接下来,我们使用不同浓度的 PEG(5%、10%和 15%PEG)、商业试剂盒和 UC 从 BALF 和血清中获得 EVs。对 EVs 进行了表征,并测定了 EV cargos 蛋白、RNA 和 miRNA 水平。我们发现,高浓度的 PEG(10%和 15%)改变了 EV 研究中常用的各种 EV 参数,包括 EV 产量、纯度和形态。以 miR-15a、miR-142 和 miR-223 为例,我们发现与使用 UC 或 5%PEG 分离的 EV 相比,10%和 15%PEG 显著降低了 EV cargos miRNA 的检测水平。总的来说,低浓度的 PEG 有利于最佳的 BALF EV 分离。

相似文献

1
Low concentration of polyethylene glycol facilitates separation of extracellular vesicles from bronchoalveolar lavage fluid.
Am J Physiol Lung Cell Mol Physiol. 2021 Apr 1;320(4):L522-L529. doi: 10.1152/ajplung.00318.2020. Epub 2021 Jan 13.
2
3
Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum.
PLoS One. 2023 Dec 5;18(12):e0295076. doi: 10.1371/journal.pone.0295076. eCollection 2023.
4
Single-step RT-qPCR for detection of extracellular vesicle microRNAs in vivo: a time- and cost-effective method.
Am J Physiol Lung Cell Mol Physiol. 2020 Apr 1;318(4):L742-L749. doi: 10.1152/ajplung.00430.2019. Epub 2020 Feb 19.
6
Cushioned-Density Gradient Ultracentrifugation (C-DGUC) improves the isolation efficiency of extracellular vesicles.
PLoS One. 2019 Apr 11;14(4):e0215324. doi: 10.1371/journal.pone.0215324. eCollection 2019.
7
Ozone-induced changes in the murine lung extracellular vesicle small RNA landscape.
Physiol Rep. 2021 Sep;9(18):e15054. doi: 10.14814/phy2.15054.
8
A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification.
Acta Biomater. 2021 Apr 1;124:336-347. doi: 10.1016/j.actbio.2021.02.004. Epub 2021 Feb 10.
9
PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time.
J Control Release. 2016 Feb 28;224:77-85. doi: 10.1016/j.jconrel.2016.01.009. Epub 2016 Jan 7.

引用本文的文献

1
Emerging Biomimetic Drug Delivery Nanoparticles Inspired by Extracellular Vesicles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jul-Aug;17(4):e70025. doi: 10.1002/wnan.70025.
2
Extracellular vesicles isolated from Arabidopsis thaliana leaves reveal characteristics of mammalian exosomes.
Protoplasma. 2024 Sep;261(5):1025-1033. doi: 10.1007/s00709-024-01954-x. Epub 2024 Apr 29.
3
Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum.
PLoS One. 2023 Dec 5;18(12):e0295076. doi: 10.1371/journal.pone.0295076. eCollection 2023.

本文引用的文献

2
Absence of the Lectin Activation Pathway of Complement Ameliorates Proteinuria-Induced Renal Injury.
Front Immunol. 2019 Sep 23;10:2238. doi: 10.3389/fimmu.2019.02238. eCollection 2019.
3
A potential role of microvesicle-containing miR-223/142 in lung inflammation.
Thorax. 2019 Sep;74(9):865-874. doi: 10.1136/thoraxjnl-2018-212994. Epub 2019 Jul 22.
4
Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli.
J Exp Med. 2019 Sep 2;216(9):2202-2220. doi: 10.1084/jem.20182313. Epub 2019 Jun 24.
6
Simultaneous polychromatic flow cytometric detection of multiple forms of regulated cell death.
Apoptosis. 2019 Jun;24(5-6):453-464. doi: 10.1007/s10495-019-01528-w.
8
10
Exosome-Mediated Small RNA Delivery: A Novel Therapeutic Approach for Inflammatory Lung Responses.
Mol Ther. 2018 Sep 5;26(9):2119-2130. doi: 10.1016/j.ymthe.2018.06.007. Epub 2018 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验